20,000 years of interactions between climate, vegetation and land use in Northern Greece

Abstract

Detailed knowledge about the history of vegetation, fire and land use is scarce in Northern Greece. We analysed lake sediments from Limni Zazari (Northern Greece) to reconstruct the past local vegetation and fire history with a special focus on land use and its impacts on erosion and lake eutrophication. Our data suggest a rather dense steppic vegetation after ca 20,000 cal bp (18050 cal bc). Forest expansion with Pinus sylvestris and admixed Quercus pubescens started around 14,500 cal bp (12550 cal bc). After the onset of the Holocene, mixed deciduous sub-mediterranean oak forests expanded, accompanied by rapidly decreasing soil erosion rates and increasing aquatic biological productivity. Pollen of cereals and Plantago lanceolata suggests continuous farming activities in the region after 8,200 cal bp (6250 cal bc), in agreement with archaeological evidence. Fairly closed mixed pine-oak forests dominated the landscape until ca 3,500 cal bp (1550 cal bc) that were only temporarily reduced during the Neolithic around 7,100 and 6,500 cal bp (5150 and 4550 cal bc). Land cover changes and aquatic biogeochemistry were closely linked during this period. Forest phases corresponded to lake eutrophication and hypolimnetic anoxia (meromixis), whereas during periods of deforestation (e.g. around 8,200 cal bp/6250 cal bc) soil erosion rates and lake mixing increased, while aquatic productivity decreased. After 3,500 cal bp (1550 cal bc) humans disrupted forests and open land vegetation expanded (e.g. Artemisia, Rumex-type, Cichorioideae, Chenopodiaceae). With the onset of the Iron Age (ca. 3,050 cal bp/1100 cal bc) grassland communities expanded massively and pine-oak forests gradually declined. Anthropogenic pressure on forests increased even more during the past 500 years. Finally, forest recovery during the recent decades led to decreased erosion and increased lake productivity. We conclude that over the millennia, intense pastoral and arable activities shaped both aquatic and terrestrial environments, ultimately creating a humanized vegetation mosaic in which the original natural mixed deciduous oak forests only form relict stands. Future climate warming and decreasing anthropogenic pressure may release a rapid spread of mixed deciduous oak forests around Limni Zazari.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ammann B, Birks HJB, Brooks SJ et al (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347

    Google Scholar 

  2. Ammann B, van Leeuwen JF, van der Knaap WO, Lischke H, Heiri O, Tinner W (2013) Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol 391:40–59

    Google Scholar 

  3. Ammerman AJ, Cavalli-Sforza LL (1971) Measuring the rate of spread of early farming in Europe. Man 6:674–688

    Google Scholar 

  4. Aufgebauer A, Panagiotopoulos K, Wagner B et al (2012) Climate and environmental change in the Balkans over the last 17 ka recorded in sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 274:122–135

    Google Scholar 

  5. Belfer-Cohen A, Goring-Morris AN (2011) Becoming farmers: the inside story. Curr Anthropol 52:209–220

    Google Scholar 

  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Google Scholar 

  7. Beug H (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  8. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London

    Google Scholar 

  9. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Google Scholar 

  10. Bond G, Heinrich H, Broecker W et al (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360:245–249

    Google Scholar 

  11. Bottema S (1974) Late Quaternary vegetation history of northwestern Greece. Dissertation, University of Groningen

  12. Bottema S (1982) Palynological investigations in Greece with special reference to pollen as an indicator of human activity. Palaeohistoria 24:257–288

    Google Scholar 

  13. Bottema S (1995) The younger Dryas in the eastern Mediterranean. Quat Sci Rev 14:883–891

    Google Scholar 

  14. Bottema S (2003) The vegetation history of the Greek Mesolithic. In: Galanidou N, Perlès C (eds) The greek mesolithic: problems and perspectives. British School at Athens Studies 10. British School at Athens, London, pp 33–49

    Google Scholar 

  15. Budja M (2004) The transition to farming and the ‘revolution’ of symbols in the Balkans. From ornament to entoptic and external symbolic storage. Doc Praehist 31:59–81

    Google Scholar 

  16. Butz C, Grosjean M, Fischer D, Wunderle S, Tylmann W, Rein B (2015) Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. J Appl Remote Sens 9(096031):1–20

    Google Scholar 

  17. Butz C, Grosjean M, Goslar T, Tylmann W (2017) Hyperspectral imaging of sedimentary bacterial pigments: a 1700 year history of meromixis from varved Lake Jaczno, northeast Poland. J Paleolimnol 58:57–72

    Google Scholar 

  18. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale Zadenatlas van Nederland. Groningen Archaeological Studies 4. Barkhuis Publishing, Groningen

    Google Scholar 

  19. Caudullo G, Tinner W (2016) Abies—Circum-Mediterranean firs in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 50–51

    Google Scholar 

  20. Chrysostomou P, Jagoulis T, Maeder A (2015) The ‘Culture of Four Lakes’: prehistoric lakeside settlements (6th-2nd mill. bc) in the Amindeon Basin, Western Macedonia, Greece. Archäol Schweiz 38:24–32

    Google Scholar 

  21. Clark JS, Merkt J, Müller H (1989) Post-glacial fire, vegetation, and human history on the northern alpine forelands, south-western Germany. J Ecol 77:897–925

    Google Scholar 

  22. Combourieu Nebout N, Peyron O, Dormoy I, Desprat S, Beaudouin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25,000 years from high resolution pollen data. Clim Past 5:503–521

    Google Scholar 

  23. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179

    Google Scholar 

  24. Curry B, Henne PD, Mesquita-Joanes F et al (2016) Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy). Quat Sci Rev 150:67–83

    Google Scholar 

  25. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912

    Google Scholar 

  26. De Beaulieu JL, Brugiapaglia E, Joannin S et al (2017) Lateglacial-Holocene abrupt vegetation changes at Lago Trifoglietti in Calabria, Southern Italy: the setting of ecosystems in a refugial zone. Quat Sci Rev 158:44–57

    Google Scholar 

  27. Eaton E, Caudullo G, Oliveira S, de Rigo D (2016) Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 160–163

    Google Scholar 

  28. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  29. El-Moslimany AP (1987) The late Pleistocene climates of the Lake Zeribar region (Kurdistan, western Iran) deduced from the ecology and pollen production of nonarboreal vegetation. Plant Ecol 72:131–139

    Google Scholar 

  30. Finsinger W, Tinner W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297

    Google Scholar 

  31. Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen, vol 1. Allgemeine Waldgeschichte. Fischer, Jena

    Google Scholar 

  32. Gkouma M, Karkanas P (2018) The physical environment in Northern Greece at the advent of the Neolithic. Quat Int 496:14–23. https://doi.org/10.1016/j.quaint.2016.08.034

    Article  Google Scholar 

  33. Gobet E, Tinner W, Hubschmid P, Jansen I, Wehrli M, Ammann B, Wick L (2000) Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps. Veget Hist Archaeobot 9:175–187

    Google Scholar 

  34. Grimm EC, Maher LJ, Nelson DM (2009) The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quat Res 72:301–308

    Google Scholar 

  35. Guilaine J (2003) De la vague à la tombe, la conquête néolithique de la Méditerranée (8000-2000 avant J.-C.). Le Seuil, Paris

    Google Scholar 

  36. Guilaine J (2018) A personal view of the neolithisation of the Western Mediterranean. Quat Int 470:211–225. https://doi.org/10.1016/j.quaint.2017.06.019

    Article  Google Scholar 

  37. Haberzettl T, Corbella H, Fey M et al (2007) Lateglacial and Holocene wet—dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310

    Google Scholar 

  38. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308

    Google Scholar 

  39. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618

    Google Scholar 

  40. Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional palaeoclimate records: chironomid-based summer temperatures from the Alpine region. Holocene 25:137–149

    Google Scholar 

  41. Hofmanová Z, Kreutzer S, Hellenthal G et al (2016) Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci USA 113:6,886–6,891

    Google Scholar 

  42. Hofstetter S, Tinner W, Valsecchi V, Carraro G, Conedera M (2006) Lateglacial and Holocene vegetation history in the Insubrian Southern Alps—New indications from a small-scale site. Veget Hist Archaeobot 15:87–98

    Google Scholar 

  43. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28:2,647–2,662

    Google Scholar 

  44. Karamitrou-Mentessidi G, Efstratiou N, Kozłowski JK et al (2013) New evidence on the beginning of farming in Greece: the Early Neolithic settlement of Mavropigi in western Macedonia (Greece). Antiquity 87(336), Project Gallery. http://antiquity.ac.uk/projgall/mentessidi336/

  45. Karamitrou-Mentessidi G, Efstratiou N, Kaczanowska M, Kozłowski JK (2015) Early neolithic settlement of Mavropigi in western greek Macedonia. Eurasian Prehist 12:47–116

    Google Scholar 

  46. Karkanas P, Pavlopoulos K, Kouli K, Ntinou M, Tsartsidou G, Facorellis Y, Tsourou T (2011) Palaeoenvironments and site formation processes at the Neolithic lakeside settlement of Dispilio, Kastoria, Northern Greece. Geoarchaeology 26:83–117

    Google Scholar 

  47. Kokkinidou D, Trantalidou K (1991) Neolithic and Bronze Age settlement in western Macedonia. Annu Br Sch Athens 86:93–106

    Google Scholar 

  48. Kotsakis K (2014) Domesticating the periphery. Pharos 20:41–73

    Google Scholar 

  49. Kotthoff U, Müller UC, Pross J, Schmiedl G, Lawson IT, van de Schootbrugge B, Schulz H (2008) Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. Holocene 18:1,019–1,032

    Google Scholar 

  50. Krauß R, Marinova E, De Brue H, Weninger B (2018) The rapid spread of early farming from the Aegean into the Balkans via the Sub-Mediterranean-Aegean Vegetation Zone. Quat Int 496:24–41

    Google Scholar 

  51. Kutzbach JE, Webb T III (1993) Conceptual basis for understanding Late-Quaternary climates. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp 5–11

    Google Scholar 

  52. Lang G (1994a) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer, Jena

    Google Scholar 

  53. Lang KJ (1994b) Abies alba Mill.: differentiation of provenances and provenance groups by the monoterpene patterns in the cortex resin of twigs. Biochem Syst Ecol 22:53–63

    Google Scholar 

  54. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Google Scholar 

  55. Lawson IT, Al-Omari S, Tzedakis PC, Bryant CL, Christaniss K (2005) Lateglacial and Holocene vegetation history at Nisi Fen and the Boras mountains, northern Greece. Holocene 15:873–887

    Google Scholar 

  56. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data Handling and Numerical Techniques. Springer, Dordrecht, pp 201–248

    Google Scholar 

  57. Lespez L, Tsirtsoni Z, Darcque P et al (2013) The lowest levels at Dikili Tash, northern Greece: a missing link in the Early Neolithic of Europe. Antiquity 87(335):30–45

    Google Scholar 

  58. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463

    Google Scholar 

  59. Mathieson I, Alpaslan-Roodenberg S, Posth C et al (2018) The genomic history of southeastern Europe. Nature 555:197–203

    Google Scholar 

  60. Moore P, Webb J, Collison M (1991) Pollen analysis. Blackwell Scientific Publications, Oxford

    Google Scholar 

  61. NGRIP (North Greenland Ice Core Project) Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Google Scholar 

  62. Özdoğan M (2011) Archaeological evidence on the westward expansion of farming communities from eastern Anatolia to the Aegean and the Balkans. Curr Anthropol 52(Suppl 4):S415–S430

    Google Scholar 

  63. Packham JR, Thomas PA, Atkinson MD, Degen T (2012) Biological flora of the British Isles: Fagus sylvatica. J Ecol 100:1,557–1,608

    Google Scholar 

  64. Pattan JN, Parthiban G, Garg A, Moraes NRC (2017) Intense reducing conditions during the last deglaciation and Heinrich events (H1, H2, H3) in sediments from the oxygen minimum zone off Goa, eastern Arabian Sea. Mar Pet Geol 84:243–256

    Google Scholar 

  65. Peyron O, Guiot J, Cheddadi R et al (1998) Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quat Res 49:183–196

    Google Scholar 

  66. Pignatti S (2005) Valori di bioindicazione delle piante vascolari della flora d’Italia. Dipartimento di Botanica ed Ecologia dell’Università, Camerino

  67. Pross J, Kotthoff U, Müller UC et al (2009) Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37:887–890

    Google Scholar 

  68. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  69. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887

    Google Scholar 

  70. Rein B, Sirocko F (2002) In situ reflectance spectroscopy analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954

    Google Scholar 

  71. Reingruber A (2008) Die Argissa Magula: das frühe und das beginnende mittlere Neolithikum im Lichte transägäischer Beziehungen. Die deutschen Ausgrabungen auf der Argissa Magula in Thessalien 2. Habelt, Bonn

  72. Rey F, Gobet E, van Leeuwen JFN et al (2017) Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments. Veget Hist Archaeobot 26:571–586

    Google Scholar 

  73. Rodwell JS (1998) British plant communities. Aquatic Communities, Swamps and Tall-Herb Fens, vol 4. Cambridge University Press, Cambridge

  74. Rosenmeier MF (2005) Bathymetric survey data of Lake Zazari. http://www.lakemaps.org. Accessed 14 May 2019

  75. Sadori L, Koutsodendris A, Panagiotopoulos K et al (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences 13:1,423–1,437

    Google Scholar 

  76. Samartin S, Heiri O, Lotter AF, Tinner W (2012) Climate warming and vegetation response after Heinrich event 1 (16 700-16 000 cal yr bp) in Europe south of the Alps. Clim Past 8:1,913–1,927

    Google Scholar 

  77. Samartin S, Heiri O, Kaltenrieder P, Kühl N, Tinner W (2016) Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quat Sci Rev 143:107–119

    Google Scholar 

  78. Samartin S, Heiri O, Joos F, Renssen H, Franke J, Brönnimann S, Tinner W (2017) Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat Geosci 10:207–212

    Google Scholar 

  79. Schier W (2009) Extensiver Brandfeldbau und die Ausbreitung der neolithischen Wirtschaftsweise in Mitteleuropa und Südskandinavien am Ende des 5. Jahrtausends v. Chr. Prähist Z 84:15–43

    Google Scholar 

  80. Seferlis M, Clement B, Aidoud A (2009) Effect of climate change and human activities on lake marginal wetlands: land use and lake dynamics during the last 60 years in Cheimaditida-Zazari catchments, Macedonia, Greece. Report on effects of climate change and human activities on lake marginal wetlands (WP1, task 4.2). Integrated project to evaluate the impacts of global change on European Freshwater Ecosystems (EURO-LIMPACS)

  81. Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11:527–539

    Google Scholar 

  82. Sinopoli G, Masi A, Regattieri E, Wagner B, Francke A, Peyron O, Sadori L (2018) Palynology of the last interglacial complex at Lake Ohrid: palaeoenvironmental and palaeoclimatic inferences. Quat Sci Rev 180:177–192

    Google Scholar 

  83. Skoulikidis NT, Bertahas I, Koussouris T (1998) The environmental state of freshwater resources in Greece (rivers and lakes). Environ Geol 36:1–17

    Google Scholar 

  84. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  85. Stuiver M, Reimer PJ, Reimer RW (2017) CALIB 7.1 [WWW program]. http://calib.org

  86. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–313

    Google Scholar 

  87. Ter Braak CJF, Smilauer P (2002) CANOCO. Software for canonical community ordination. Microcomputer Power, Ithaca

    Google Scholar 

  88. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505

    Google Scholar 

  89. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:551–554

    Google Scholar 

  90. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549

    Google Scholar 

  91. Tinner W, Conedera M, Ammann B, Gaggeler HW, Gedye S, Jones R, Sagesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8:31–42

    Google Scholar 

  92. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. Holocene 10:565–574

    Google Scholar 

  93. Tinner W, van Leeuwen JF, Colombaroli D et al (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28:1,498–1,510

    Google Scholar 

  94. Tinner W, Beer R, Bigler C et al (2015) Late-Holocene climate variability and ecosystem responses in Alaska inferred from high-resolution multiproxy sediment analyses at Grizzly Lake. Quat Sci Rev 126:41–56

    Google Scholar 

  95. Tinner W, Vescovi E, van Leeuwen JF et al (2016) Holocene vegetation and fire history of the mountains of Northern Sicily (Italy). Veget Hist Archaeobot 25:499–519

    Google Scholar 

  96. Trachsel M, Grosjean M, Schnyder D, Kamenik C, Rein B (2010) Scanning reflectance spectroscopy (380-730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44:979–994

    Google Scholar 

  97. Tringham R (2000) Southeastern Europe in the transition to agriculture in Europe: bridge, buffer, or mosaic. In: Price TD (ed) Europe’s first farmers. Cambridge University Press, Cambridge, pp 19–56

    Google Scholar 

  98. Valamoti SM, Kotsakis K (2007) Transitions to Agriculture in the Aegean: the archaeobotanical evidence. In: Colledge S, Connolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut Creek, pp 75–91

    Google Scholar 

  99. Valsecchi V, Finsinger W, Tinner W, Ammann B (2008) Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). Holocene 18:603–614

    Google Scholar 

  100. Van Geel B, Raspopov OM, van der Plicht J, Renssen H (1998) Solar forcing of abrupt climate change around 850 calendar years bc. In: Peister BJ, Palmer T, Bailey ME (eds) Natural catastrophes during bronze age civilisations: archaeological, geological, astronomical and cultural perspectives. BAR International Series 728. Archaeopress, Oxford, pp 162–168

  101. Vescovi E, Ravazzi C, Arpenti E et al (2007) Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669

    Google Scholar 

  102. Vogel H, Wagner B, Zanchetta G, Sulpizio R, Rosén P (2010) A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. J Paleolimnol 44:295–310

    Google Scholar 

  103. Von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dyn 14:73–81

    Google Scholar 

  104. Weninger B, Alram-Stern E, Bauer E et al (2006) Climate forcing due to the 8200 cal yr bp event observed at Early Neolithic sites in the eastern Mediterranean. Quat Res 66:401–420

    Google Scholar 

  105. Wijmstra TA, Smit A (1976) Palynology of the middle part (30-78 metres) of the 120 m deep section in northern Greece (Macedonia). Plant Biol 25:297–312

    Google Scholar 

  106. Williams JW, Post DM, Cwynar LC, Lotter AF, Levesque AJ (2002) Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30:971–974

    Google Scholar 

  107. Willis KJ (1992) The late quaternary vegetational history of northwest Greece. New Phytol 121:119–138

    Google Scholar 

  108. Ziegler M, Jilbert T, De Lange GJ, Lourens LJ, Reichart G (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosyst. https://doi.org/10.1029/2007gc001932

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the coring team Willi Tanner, André Lotter, Sandra Brügger and Sebastian Eggenberger for the field work. Tiziana Pedrotta is acknowledged for help during XRF analysis, Pim van der Knaap for help with botanical identifications, Sandra Brügger and Fabian Rey for help with figure design. We acknowledge the University of Bern for financing field work (ID-Grant 2015/003 to A. Hafner and W. Tinner). S. Makri was funded through the Hans Sigrist Foundation and SNF Grant (200021_172586).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwörer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by F. Bittmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gassner, S., Gobet, E., Schwörer, C. et al. 20,000 years of interactions between climate, vegetation and land use in Northern Greece. Veget Hist Archaeobot 29, 75–90 (2020). https://doi.org/10.1007/s00334-019-00734-5

Download citation

Keywords

  • Aquatic productivity
  • Fire history
  • Land use
  • Neolithisation
  • Palaeoecology
  • Vegetation history