Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies

Abstract

Biogeographers assign the Cannabis centre of origin to “Central Asia”, mostly based on wild-type plant distribution data. We sought greater precision by adding new data: 155 fossil pollen studies (FPSs) in Asia. Many FPSs assign pollen of either Cannabis or Humulus (CH) to collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies. CH pollen in a steppe assemblage (with Poaceae, Artemisia, Chenopodiaceae) was identified as wild-type Cannabis. CH pollen in a forest assemblage (Alnus, Salix, Quercus, Robinia, Juglans) was identified as Humulus. CH pollen curves that upsurged alongside crop pollen were identified as cultivated hemp. Subfossil seeds (fruits) at archaeological sites also served as evidence of cultivation. All sites were mapped using geographic information system software. The oldest CH pollen consistent with Cannabis dated to 19.6 ago (Ma), in northwestern China. However, Cannabis and Humulus diverged 27.8 Ma, estimated by a molecular clock analysis. We bridged the temporal gap between the divergence date and the oldest pollen by mapping the earliest appearance of Artemisia. These data converge on the northeastern Tibetan Plateau, which we deduce as the Cannabis centre of origin, in the general vicinity of Qinghai Lake. This co-localizes with the first steppe community that evolved in Asia. From there, Cannabis first dispersed west (Europe by 6 Ma) then east (eastern China by 1.2 Ma). Cannabis pollen in India appeared by 32.6 thousand years (ka) ago. The earliest archaeological evidence was found in Japan, 10,000 bce, followed by China.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma). Earth-Sci Rev 88:145–166

    Google Scholar 

  2. Andrek HY, Balog L, Sheer MV (2010) Humulus japonicus Siebold et Zucc. (Cannabaceae)—нoвий aдвeнтивний вид флopи Укpaїни. Укp бoтaн жypн 67:438–445

    Google Scholar 

  3. Bakshi SK, Atal CK (1985) Hops in India. Council of Scientific and Industrial Research, Jammu-Tawi

    Google Scholar 

  4. Balogh L, Dancza I (2008) Humulus japonicus, an emerging invader in Hungary. In: Tokarska-Guzik B et al (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publishers, Leiden, pp 73–79

    Google Scholar 

  5. Bande MB (1992) The Palaeogene vegetation of peninsular India (megafossil evidence). Palaeobotanist 40:275–284

    Google Scholar 

  6. Bleed P, Matsui A (2010) Why didn’t agriculture develop in Japan? A consideration of Jomon ecological style, niche construction, and the origins of domestication. J Archaeol Method Theory 17:356–370

    Google Scholar 

  7. Bosboom RE, Dupont-Nivet G, Houben AJP et al (2011) Late Eocene sea retreat from the Tarim Basin and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 299:385–398

    Google Scholar 

  8. Bottema S, Kopaka K, Alexopoulos A (2003) The Late-Holocene vegetation history of Gavdos (Crete) in relation to long distance pollen dispersal: the Trypiti pollen diagram. In: Tonkov S (ed) Aspects of palynology and palaeoecology. Pensoft, Moscow, pp 199–212

    Google Scholar 

  9. Boutain JR (2014) On the origin of hops: genetic variability, phylogenetic relationships, and ecological plasticity of Humulus (Cannabaceae). Doctoral dissertation, University of Hawai’i, Honolulu, HI

  10. Clarke RC, Merlin MD (2013) Cannabis: evolution and ethnobotany. University of California Press, Berkeley

    Google Scholar 

  11. Crisci JV, Katinas L, Posadas P (2003) Historical biogeography. Harvard University Press, Cambridge

    Google Scholar 

  12. De Candolle AP (1883) Origine des Plantes Cultivées. Baillière, Paris

    Google Scholar 

  13. Dörfler W (1990) Die Geschichte des Hanfanbaus in Mitteleuropa aufgrund palynologischer Untersuchungen und von Großrestnachweisen. Prähist Z 65:218–244

    Google Scholar 

  14. Dorofeev PI (1969) Mиoцeнoвaя флopa Maмoнтoвoй гopы нa Aлдaнe (Miocene Flora of the Mammoth Mountain on the Aldan). Izd-vo Akademia nauk SSSR, Leningrad

    Google Scholar 

  15. Dorofeev PI (1982) Cannabaceae. In: Takhtajan AL (ed) Иcкoпaeмыe цвeткoвыe pacтeния Poccии и coпpeдeльныx гocyдapcтв, T. 2 (Fossil Flowering Plants of Russia and Neighboring States, Vol 2). Izd-vo Nauka, Leningrad, pp 43–48

  16. Eom BC, Kim JW (2017) Phytocoenosen and distribution of a wild tea (Camellia sinensis (L.) Kuntze) population in South Korea. Korean J Plant Res 30:176–190

    Google Scholar 

  17. Friedrich PA (1883a) “Cannabis oligocaenica nov. spec.”, Beiträge zur Kenntnis der Tertiärflora der Provinz Sachsen. Schropp, Berlin, pp 165–166

  18. Friedrich PA (1883b) Atlas zu den Abhandlungen zur geologischen Specialkarte von Preussen den Thüringischen Staaten, Band IV, Heft 3. Schropp, Berlin

  19. Fries M (1958) Vegetationsutveckling och odlingshistoria i Varnhemstrakten: en pollenanalytisk undersökning i Västergötland. Acta Phytogeogr Suec 39:1–63

    Google Scholar 

  20. Fröman I (1939) Die Hölzer des Rades und der Hopfenfund. In: von Post L, Oldeberg A, Fröman I (eds) Ein eisenzeitliches Rad aus dem Filaren-See in Södermanland, Schweden. Wahlström & Widstrand, Stockholm, pp 89–98

    Google Scholar 

  21. Gray A (1859) Diagnostic characters of new species of phanerogamous plants collected in Japan by Charles Wright, Botanist of the U.S. North Pacific Exploring Expedition. With observation upon the relations of the Japanese flora of that of North America. Mem Am Acad Arts Sci 6:377–453

    Google Scholar 

  22. Hämeen-Anttila J (2006) The last pagans of Iraq: Ibn Wahshīyah and his Nabatean Agriculture. Brill, Leiden

    Google Scholar 

  23. Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975

    Google Scholar 

  24. Hohmann N, Wolf EM, Rigault P et al (2018) Ginkgo biloba’s footprint of dynamic Pleistocene history dates back only 390,000 years. BMC Genomics 19:2999

    Google Scholar 

  25. Hooker JD (1890) The Flora of British India, Vol 5: Chenopodiaceae to Orchideae. L. Reeve & Co., London

  26. Hu Z, Wu QA (1992) Studies of the rare and endangered plant species in the Yunnan region of China. In: Adams RP, Adams JE (eds) Conservation of plant genes: DNA banking and in vitro biotechnology. Academic Press, New York, pp 267–272

    Google Scholar 

  27. Huang YJ, Jia LB, Wang Q, Mosbrugger V et al (2016) Cenozoic plant diversity of Yunnan: a review. Plant Divers 38:271–282

    Google Scholar 

  28. Jarolímek I, Kolbek J (2006) Plant communities dominated by Salix gracilis in Korean peninsula and Japan. Biol Bratisl 61:63–70

    Google Scholar 

  29. Jeong HR, Kim HJ, Choi K et al (2012) Vegetation structure and distribution of forested wetland at public and private forests in Daegu City. J Agric Life Sci 46:69–84

    Google Scholar 

  30. Jiang HE, Wang L, Merlin MD et al (2016) Ancient Cannabis burial shroud in a Central Eurasian cemetery. Econ Bot 70:213–221

    Google Scholar 

  31. Jung YK, Kim JW (1998) Syntaxonomy of mantle communities in South Korea. Korean J Ecol 21:739–750

    Google Scholar 

  32. Khan MS, Halim M (1990) Flora of Bangladesh, No. 14: Cannabidaceae. Bangladesh Agricultural Research Council, Dacca

  33. Khuroo AA, Rashid I, Reshi Z et al (2007) The alien flora of Kashmir Himalaya. Biol Invas 9:269–292

    Google Scholar 

  34. Kim SS, Kim YS, Ha SG, Shin HT (2010) Dispersion of vascular plant in Daepyeong swamp, Korea. J Korean Nat 3:187–198

    Google Scholar 

  35. Knobloch AH, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpr ustred ustavu Geol 47:1–219

    Google Scholar 

  36. Kobayashi M, Momohara A, Okitsu S et al (2008) Fossil hemp fruits in the earliest Jomon period from the Okinoshima site, Chiba Prefecture. Shokuseishi kenkyū 16:11–18

    Google Scholar 

  37. Kolbek J, Karolímek I (2008) Man-influenced vegetation of North Korea. Linzer Biol Beitr 40:381–404

    Google Scholar 

  38. Kolbek J, Sádlo J (1996) Some short-lived ruderal plant communities of non-trampled habitats in North Korea. Folia Geobot 31:207–217

    Google Scholar 

  39. Kress WJ, DeFilipps RA, Farr E et al (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Smithsonian Institution, Washington, DC

    Google Scholar 

  40. Kuhn D (1988) Textile Technology: Spinning and reeling. In: Needham J, Wang L (eds) Science and civilisation in China, vol 5. Part 9. Cambridge University Press, Cambridge, pp 1–520

    Google Scholar 

  41. Lee SJ, Ahn YH (2014) Study of vegetation structure about shrine forest in Jirisan National Park with regard to global warming. J Environ Sci Int 23:1,863–1,879

    Google Scholar 

  42. Lee CY, Liew PM (2010) Late quaternary vegetation and climate changes inferred from a pollen record of Dongyuan Lake in southern Taiwan. Palaeogeogr Palaeoclimatol Palaeoecol 287:58–66

    Google Scholar 

  43. Lee HJ, Kim JH, Chun YM, Choung HL (1976) Synecology of the forest vegetation of Yeongjongo. Korean J Ecol 26:223–236

    Google Scholar 

  44. Lee KS, Cho MG, Moon HS, Jeon KS (2013) The list of vascular plants at Junam wetland in Changwon City. Korean J Agric For Meteorol 15:67–75

    Google Scholar 

  45. Li HL (1974) An archaeological and historical account of cannabis in China. Econ Bot 28:437–448

    Google Scholar 

  46. Li XH, Shao JW, Lu C et al (2012) Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China. J Syst Evol 50:325–333

    Google Scholar 

  47. Long T, Wagner M, Demske D, Leipe C, Tarasov PE (2017) Cannabis in Eurasia: origin of human use and Bronze Age trans-continental connections. Veget Hist Archaeobot 26:245–258

    Google Scholar 

  48. Lynch RC, Vergara D, Tittes S et al (2016) Genomic and chemical diversity in Cannabis. Crit Rev Plant Sci 35:349–363

    Google Scholar 

  49. Manchester SR, Akhmetiev MA, Kodrul TM (2002) Leaves and fruits of Celtis aspera (Newberry) comb. nov. (Celtidaceae) from the Paleocene of North America and Eastern Asia. Int J Plant Sci 163:725–736

    Google Scholar 

  50. Manchester SR, Chen ZD, Lu AM et al (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J Syst Evol 47:1–42

    Google Scholar 

  51. Maximovich CJ (1859) Primitiae florae Amurensis. Versuch einer Flora des Amur-Landes, Kaiserliche Akademie der Wissenschaften

    Google Scholar 

  52. McPartland JM (2018) Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res 3:203–212

    Google Scholar 

  53. McPartland JM, Hegman W (2018) Cannabis utilization and diffusion patterns in prehistoric Europe: a critical analysis of archaeological evidence. Veget Hist Archaeobot 27:627–634

    Google Scholar 

  54. McPartland JM, Guy GW, Hegman W (2018) Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies. Veget Hist Archaeobot 27:635–648

    Google Scholar 

  55. Mercuri AM, Accorsi CA, Mazzanti MB (2002) The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veget Hist Archaeobot 11:263–276

    Google Scholar 

  56. Miao YF, Meng QQ, Fang XM et al (2011) Origin and development of Artemisia (Asteraceae) in Asia and its implications for the uplift history of the Tibetan Plateau: a review. Quat Int 236:3–12

    Google Scholar 

  57. Morley RJ, Dick CW (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Am J Bot 90:1,638–1,644

    Google Scholar 

  58. Mosbrugger V, Utescher T (1997) The co-existence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86

    Google Scholar 

  59. Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol 289:44–61

    Google Scholar 

  60. Oh YJ, Yoo JH, Moon BC et al (2008) Habitat characteristic and community structures of Humulus japonicus in Korea’s middle region. Korean J Environ Agric 27:72–79

    Google Scholar 

  61. Oh HK, Beon MS, Kim YH (2010) Classification by plants communities of the Wi-do (Island), Buan—focused on Jilli evergeen forest, Chido wetland, and Seokgeum. J Korean Nat 3:159–169

    Google Scholar 

  62. Palamarev E (1982) Heoгeнcкaтa кapпoфлopa нa Meлнишкия бaceйн. Paleontol Stratigr Lithol 16:3–43

    Google Scholar 

  63. Parham JF, Donoghue PCJ, Bell CJ et al (2012) Best practices for justifying fossil calibrations. Syst Biol 61:346–359

    Google Scholar 

  64. Pételot PA (1954) Les plantes médicinales du Cambodge, du Laos et du Viêtnam. Centre de recherches scientifiques et techniques, Saigon

    Google Scholar 

  65. Quamar MF, Bera SK (2017) Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the late Quaternary. Palynology 41:17–30

    Google Scholar 

  66. Russo EB, Jiang HE, Li X et al (2008) Phytochemical and genetic analyses of ancient cannabis from Central Asia. J Exper Bot 59:4,171–4,182

    Google Scholar 

  67. Santisuk T, Balslev H (2015) Flora of Thailand, Vol 13, Part 1: Achariaceae, Adoxaceae, Cannabaceae, Caprifoliaceae, Ericaceae, Salicaceae & Ulmaceae. Forest Herbarium, Depart of National Parks, Wildlife and Plant Conservation, Bangkok

  68. Sawler J, Stout JM, Gardner KM et al (2015) The genetic structure of marijuana and hemp. PLoS ONE 10:e0133292

    Google Scholar 

  69. Small E (1978) A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot 3:37–76

    Google Scholar 

  70. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435

    Google Scholar 

  71. Song JS, Song SD (1996) A phytosociological study on the riverside vegetation around Hanchon an upper stream of Nak-tong River. Korean J Ecol 19:431–451

    Google Scholar 

  72. Song YH, Cohen DJ, Shi JM et al (2017) Environmental reconstruction and dating of Shizitan 29, Shanxi Province: an early microblade site in north China. J Archaeol Sci 79:19–35

    Google Scholar 

  73. Sood SK, Thakur R (2015) Herbal resources of India and Nepal. Scientific Publishers, Jadhpur

    Google Scholar 

  74. Stevens PF (2008) Angiosperm phylogeny website, Version 9. Accesssed at http://www.mobot.org/MOBOT/research/APweb/

  75. Steward RR (1971) Flora of West Pakistan. Fakhri, Karachi

    Google Scholar 

  76. Sun BN, Wu JY, Liu YS et al (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 304:328–336

    Google Scholar 

  77. Sun JM, Ni XJ, Bi SD et al (2014) Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene boundary in Asia. Sci Rep 4:7,463

    Google Scholar 

  78. Tarasov PE, Savelieva LA, Long T et al (2018) Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quat Int. https://doi.org/10.1016/j.quaint.2018.02.029

    Article  Google Scholar 

  79. Vavilov NI (1926) The origin of the cultivation of “primary” crops, in particular cultivated hemp. Tpyды пo пpиклaднoй бoтaникe, гeнeтикe и ceлeкции 16:221–233

  80. Wang WM (1996) On the origin and development of steppe vegetation in China. Palaeobotanist 45:447–456

    Google Scholar 

  81. Watt G (1889) A dictionary of the economic products of India, vol 2. Calcutta Office of the Superintendent of Government Printing, Allen

    Google Scholar 

  82. Wilson DG (1975) Plant remains from the Graveney boat and the early history of Humulus lupulus L. in W, Europe. N Phytol 75:627–648

    Google Scholar 

  83. Wu JY, Liu J, Provan J et al (2018) Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol Lett 21(1515):1529

    Google Scholar 

  84. Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. PNAS 114:E3,444–E3,451

    Google Scholar 

  85. Yang MQ, van Velzen R, Bakker FT et al (2013) Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62:458–472

    Google Scholar 

  86. Yang MQ, Li DZ, Wen J et al (2017) Phylogeny and biogeography of the amphi-Pacific genus Aphananthe. PLoS ONE 12:e0171405

    Google Scholar 

  87. Yesson C, Russell SJ, Parrish T et al (2004) Phylogenetic framework for Trema (Celtidaceae). Plant Syst Evol 248:85–109

    Google Scholar 

  88. Zecchetto S, De Blasio F (2007) Sea surface winds over the Mediterranean Basin of satellite data (2000-04): Meso- and Local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol 46:814–827

    Google Scholar 

  89. Zhang SL, Gao HY (1999) 荥阳青台遗址出土的丝麻品观察与研究 (Observation and study of silk and hemp recovered from Qingtai archaeological site, Xingyang). Zhōngyuán Wénwù 3:10–16

    Google Scholar 

  90. Zhang HL, Jin JJ, Moore MJ et al (2018a) Plastome characteristics of Cannabaceae. Plant Divers 40:127–137

    Google Scholar 

  91. Zhang QY, Chen X, Gou HY et al (2018b) Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci 9:1876

    Google Scholar 

  92. Zhao HB, Chen FD, Chen SM et al (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169

    Google Scholar 

  93. Zhou YM (1980) 钱山漾残绢片出土的启示 (Revelations of the excavation of the silk tabby remnant from Qianshanyang). Wénwù 1980(1):74–77

    Google Scholar 

  94. Zhou Z, Bartholomew B (2003) Cannabaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 5. Science Press, Beijing, pp 74–75

    Google Scholar 

  95. Zhou B, Shen CD, Sun WD et al (2007) Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 252:617–625

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John M. McPartland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by F. Bittmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 629 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McPartland, J.M., Hegman, W. & Long, T. Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Veget Hist Archaeobot 28, 691–702 (2019). https://doi.org/10.1007/s00334-019-00731-8

Download citation

Keywords

  • Cannabis sativa
  • Humulus lupulus
  • Cannabaceae
  • Biogeography
  • Centre of origin
  • GIS