Compositional turnover and variation in Eemian pollen sequences in Europe

Abstract

The Eemian interglacial represents a natural experiment on how past vegetation with negligible human impact responded to amplified temperature changes compared to the Holocene. Here, we assemble 47 carefully selected Eemian pollen sequences from Europe to explore geographical patterns of (1) total compositional turnover and total variation for each sequence and (2) stratigraphical turnover between samples within each sequence using detrended canonical correspondence analysis, multivariate regression trees, and principal curves. Our synthesis shows that turnover and variation are highest in central Europe (47–55°N), low in southern Europe (south of 45°N), and lowest in the north (above 60°N). These results provide a basis for developing hypotheses about causes of vegetation change during the Eemian and their possible drivers.

This is a preview of subscription content, log in to check access.

Fig. 1

(modified from Birks and Birks 2004). a The three phases of Eemian vegetation history, namely protocratic, mesocratic, and oligocratic plus telocratic, in response to changing temperature (outer arc). b Hypothetical model of compositional change (turnover) within an Eemian pollen sequence with expected patterns of turnover in each geographical region and an indication of total palynological turnover and total palynological variation expected in north (above 60°N), central (45–60°N), and south (below 45°N) Europe. The turnover axis can be, for example, an ordination axis

Fig. 2
Fig. 3

References

  1. Andersen ST (1994) History of the terrestrial environment in the Quaternary of Denmark. Bull Geol Soc Denmark 41:219–228

    Google Scholar 

  2. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  Google Scholar 

  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  4. Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115

    Article  Google Scholar 

  5. Birks HJB (1986) Late Quaternary biotic changes in terrestrial and limnic environments, with particular reference to north west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65

    Google Scholar 

  6. Birks HJB (2007) Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Veget Hist Archaeobot 16:197–202. https://doi.org/10.1007/s00334-006-0079-1

    Article  Google Scholar 

  7. Birks HJB, Birks HH (2004) The rise and fall of forests. Science 305(5683):484–485. https://doi.org/10.1126/science.1101357

    Article  Google Scholar 

  8. Brauer A, Allen JRM, Mingram J, Dulski P, Wulf S, Huntley B (2007) Evidence for last interglacial chronology and environmental change from southern Europe. Proc Natl Acad Sci USA 104:450–455. https://doi.org/10.1073/pnas.0603321104

    Article  Google Scholar 

  9. Buckley LB, Jetz W (2008) Linking global turnover of species and environments. Proc Natl Acad Sci USA 105:17,836–17,841. https://doi.org/10.1073/pnas.0803524105

    Article  Google Scholar 

  10. Descombes P, Vittoz P, Guisan A, Pellissier L (2017) Uneven rate of plant turnover along elevation in grasslands. Alp Bot 127:53–63. https://doi.org/10.1007/s00035-016-0173-7

    Article  Google Scholar 

  11. Dutton A, Carlson AE, Long AJ et al (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244):1–9. https://doi.org/10.1126/science.aaa4019

    Article  Google Scholar 

  12. Fischer H, Meissner KJ, Mix AC et al (2018) Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat Geosci 11:474–485. https://doi.org/10.1038/s41561-018-0146-0

    Article  Google Scholar 

  13. Harting P (1874) De bodem van het Eemdal. Verslagen en Mededelingen van de Koninklijke Academie van Wetenschappen. Afdeling Naturkunde II 8:282–290

    Google Scholar 

  14. Helmens KF (2014) The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe. Quat Sci Rev 86:115–143. https://doi.org/10.1016/j.quascirev.2013.12.012

    Article  Google Scholar 

  15. Iversen J (1960) Problems of the early post-glacial forest development in Denmark. Danmarks Geologiske Undersøgelse 4. række, 4, nr. 3. Reitzel, København

    Google Scholar 

  16. Jackson ST, Blois JL (2015) Community ecology in a changing environment: perspectives from the Quaternary. Proc Natl Acad Sci USA 112:4,915-4,921. https://doi.org/10.1073/pnas.1403664111

    Article  Google Scholar 

  17. Jarzyna MA, Finley AO, Porter WF, Maurer BA, Beier CM, Zuckerberg B (2014) Accounting for the space-varying nature of the relationships between temporal community turnover and the environment. Ecography 37:1,073–1,083. https://doi.org/10.1111/ecog.00747

    Article  Google Scholar 

  18. Jessen K, Milthers V (1928) Stratigraphical and paleontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. In: Danmarks Geologiske Undersøgelse 2. Raekke, nr. 48. Reitzel, København

    Google Scholar 

  19. Kühl N (2003) Die Bestimmung botanisch-klimatologischer Transferfunktionen und die Rekonstruktion des bodennahen Klimazustandes in Europa während der Eem-Warmzeit. Dissertationes Botanicæ 375. Borntraeger, Stuttgart

    Google Scholar 

  20. Kukla GJ, Bender ML, de Beaulieu J-L, Bond G, Broecker WS, Cleveringa P, Gavin JE, Herbert TD, Imbrie J, Jouzel J, Keigwin LD, Knudsen K-L, McManus JF, Merkt J, Muhs DR, Müller H, Poore RZ, Porter SC, Seret G, Shackleton NJ, Turner C, Tzedakis PC, Winograd IJ (2002) Last interglacial climates. Quat Res 58:2–13. https://doi.org/10.1006/qres.2001.2316

    Article  Google Scholar 

  21. Kupryjanowicz M, Nalepka D, Pidek IA et al (2018) The east-west migration of trees during the Eemian Interglacial registered on isopollen maps of Poland. Quat Int 467:178–191. https://doi.org/10.1016/j.quaint.2017.08.034

    Article  Google Scholar 

  22. Maher LJ, Heiri O, Lotter AF (2012) Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data handling and numerical techniques. Springer, Dordrecht, pp 143–166. https://doi.org/10.1007/978-94-007-2745-8_6

    Google Scholar 

  23. Milner AM, Müller UC, Roucoux KH et al (2013) Environmental variability during the Last Interglacial: a new high-resolution pollen record from Tenaghi Philippon, Greece. J Quat Sci 28:113–117. https://doi.org/10.1002/jqs.2617

    Article  Google Scholar 

  24. Müller H (1974) Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der holsteinzeitlichen Kieselgur von Munster-Breloh. Geol Jb A21:107–140

    Google Scholar 

  25. Salonen JS, Helmens KF, Brendryen J et al (2018) Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat Commun 9:2851. https://doi.org/10.1038/s41467-018-05314-1

    Article  Google Scholar 

  26. Sánchez Goñi MF, Bakker P, Desprat S et al (2012) European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology 40:627–630. https://doi.org/10.1130/G32908.1

    Article  Google Scholar 

  27. Shackleton NJ, Sánchez Goñi MF, Pailler D, Lancelot Y (2003) Marine Isotope Substage 5e and the Eemian interglacial. Glob Planet Chang 36:151–155. https://doi.org/10.1016/S0921-8181(02)00181-9

    Article  Google Scholar 

  28. Simpson GL, Birks HJB (2012) Statistical learning in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data handling and numerical techniques. Springer, Dordrecht, pp 249–327. https://doi.org/10.1007/978-94-007-2745-8_9

    Google Scholar 

  29. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, Cambridge

    Google Scholar 

  30. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  31. ter Braak CJF, Šmilauer P (2012) Canoco Reference Manual and User’s Guide: software for ordination (version 5.0). Microcomputer Power, Ithaca

    Google Scholar 

  32. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  33. Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry, part 2: quantifying beta diversity and related phenomena. Ecography 33:23–45. https://doi.org/10.1111/j.1600-0587.2009.06148.x

    Article  Google Scholar 

  34. Tzedakis PC (2007a) Pollen records, last interglacial of Europe. In: Elias SA (ed) Encyclopedia of Quaternary science, vol 3. Elsevier, Amsterdam pp 2597–2605

    Google Scholar 

  35. Tzedakis PC (2007b) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2,042–2,066. https://doi.org/10.1016/j.quascirev.2007.03.014

    Article  Google Scholar 

  36. Tzedakis PC, Andrieu V, de Beaulieu JL et al (2001) Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat Sci Rev 20:1,583–1,592

    Article  Google Scholar 

  37. Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat Geosci 5:138–141. https://doi.org/10.1038/ngeo1358

    Article  Google Scholar 

  38. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704. https://doi.org/10.1016/j.tree.2013.09.001

    Article  Google Scholar 

  39. Tzedakis PC, Drysdale RN, Margari V et al (2018) Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat Commun 9:4235. https://doi.org/10.1038/s41467-018-06683-3

    Article  Google Scholar 

  40. Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008) The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–103. https://doi.org/10.1111/j.2007.0030-1299.16130.x

    Article  Google Scholar 

  41. Williams JW, Blois JL, Shuman BN (2011a) Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol 99:664–677. https://doi.org/10.1111/j.1365-2745.2011.01810.x

    Article  Google Scholar 

  42. Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469

    Article  Google Scholar 

Download references

Acknowledgements

We thank Konrad Wolowski for granting us access to the Polish Pleistocene Pollen Database. We are also very grateful to the European Pollen Database (http://www.europeanpollendatabase.net/) and the invaluable work of the EPD data contributors and the EPD community for making EPD data publicly available. HJBB is indebted to Hilary Birks for many valuable discussions. HJBB, SGAF, and CRJ are supported by the ERC Advanced Grant 741413 Humans on Planet Earth (HOPE). VAF is supported by IGNEX-eco (6166) funded by VISTA—a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor; BB and BR are supported by NFR project IGNEX (249894). This paper is a contribution to the IGNEX and IGNEX-eco projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vivian A. Felde.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by F. Bittmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1011 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Felde, V.A., Flantua, S.G.A., Jenks, C.R. et al. Compositional turnover and variation in Eemian pollen sequences in Europe. Veget Hist Archaeobot 29, 101–109 (2020). https://doi.org/10.1007/s00334-019-00726-5

Download citation

Keywords

  • Detrended canonical correspondence analysis
  • Extrinsic and intrinsic processes
  • Inertia
  • Last interglacial dataset
  • Multivariate regression trees
  • Neutral processes
  • Principal curves