Vegetation and climate changes within and around the Polistovo-Lovatskaya mire system (Pskov Oblast, north-western Russia) during the past 10,500 years

  • Maria B. NosovaEmail author
  • Elena Yu. Novenko
  • Elena E. Severova
  • Olga A. Volkova
Original Article


Palaeoenvironmental conditions during the last 10,500 years cal bp are reconstructed for the vicinity of the Polistovo-Lovatskaya mire system in Pskov Oblast (administrative division), Russia, using the latest data from pollen and plant macrofossil records, ash content, radiocarbon dating and the moisture index of samples obtained from the Kokorevskoe peat core in the central part of that mire system. Comparing the results of this study with earlier data obtained from neighbouring sites in southern Estonia, northern Belarus and central Russia indicates a great similarity of the main patterns of vegetation changes throughout the Holocene. Certain distinctions were also observed along this longitude associated with changing climate and local post-glacial processes. The vegetation dynamics of the Polistovo-Lovatskaya mire system during the Holocene have specific features, such as a late increase in the pollen records of broadleaved trees (Quercus, Tilia, Fraxinus and Ulmus) at ca. 7,500 cal bp, with a maximum at ca. 3,500–2,500 cal bp. Four crucial time periods for the appearance and development of early agriculture were identified: the first cultivation signs (ca. 4,200 cal bp), an increase during the Iron Age (2,500–2,300 cal bp), an increase during the Slav colonization (ca. 1,000 cal bp) and further expansion after 400 cal bp. Corresponding changes in forest composition in the region were also observed. The climatic reconstruction revealed several features which are known all over northern Europe in the Holocene, for example the “event of 9,400 years bp”, “event of 8,200 years bp” and a sharp increase of temperature at 7,700 cal bp.


Palaeoenvironment Palaeoclimate Vegetation history Pollen analysis Holocene European Russia 



The study was funded by the institutional research project no. 118021490111-5 and the Russian Foundation for Basic Research (Российский фонд фундаментальных исследований), projects 14-04-01405 and 17-04-01034. The climatic reconstructions, performed by E. Novenko, were supported by the Russian Science Foundation (Российский научный фонд), project 16-17-10045. We thank Lyudmila Stojkina (Institute of Biology, Karelian Branch of Russian Academy of Sciences) for macrofossil analysis, Mikhail Yablokov, Svetlana Igosheva and the staff of Polistovsky Reserve for their help in our fieldwork. Additionally, we thank Olga Lisitsyna for critical comments and substantial assistance during the process of our work with this article.


  1. Aleksandrovskii AL, Arslanov KA, Davydova NN et al (2009) New data on the Ladoga transgression, the Neva river formation, and agricultural development of northwestern Russia. Dokl Earth Sci 425:274–278CrossRefGoogle Scholar
  2. Arslanov KA, Savelieva L, Klimanov V, Chernov S, Maksimov F, Tertychnaya T, Subetto D (2001) New data on chronology of landscape-paleoclimatic stages in northwestern Russia during the Late Glacial and Holocene. Radiocarbon 43:581–594CrossRefGoogle Scholar
  3. Bjune AE, Jostein B, Atle N, Birks HJB (2005) Holocene mean July temperature and winter precipitation in western Norvay inferred from palynological and glaciological lake-sediment proxies. Holocene 15:177–189CrossRefGoogle Scholar
  4. Boch MS, Mazing VV (1979) Экосистемы болот СССР (Bog ecosystems of USSR, in Russian). Ripol Classik, LeningradGoogle Scholar
  5. Bogdanovskaya-Guiheneuf ID (1969) Закономерности формирования сфагновых болот верховного типа (на примере Полистово-Ловатского массива. (Development patterns of Sphagnum raised bogs: a case study from the Polystovo-Lovatskaya’ mire massif, in Russian). Nauka, LeningradGoogle Scholar
  6. Bond G, Showers W, Cheseby M et al (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1,257–1,266CrossRefGoogle Scholar
  7. Borzenkova I, Zorita E, Borisova O et al (2015) Climate change during the Holocene (past 12,000 years). In: The BACC Author Team (eds) Second assessment of climate change for the Baltic sea basin. Springer, Cham, pp 25–49Google Scholar
  8. Davis BA, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1,701–1,716CrossRefGoogle Scholar
  9. Davydova NN, Subetto DA, Khomutova VI (1992) Озеро Ильмень (Ilmen lake, in Russian). In: Davydova NN, Kabailene MV, Rauskas AV, Yakushko OF (eds) История озер Восточно-Европейской равнины. History of lakes on the East-European Plain, in Russian. Nauka, St. Petersburg, pp 101–117Google Scholar
  10. Dolukhanov PM, Subetto DA, Arslanov KA et al (2010) Holocene oscillations of the Baltic sea and Lake Ladoga levels and early human movements. Quat Int 220:102–111CrossRefGoogle Scholar
  11. Dyachkova TY, Stoykina NV (2001) Анализ торфа, В: (Peat macrofossil analysis, B, in Russian). In: Markovskaya et al. (eds.) Методы полевых и лабораторных исследований растений и растительного покрова (Field and laboratory methods for plant and vegetation researches, in Russian). Petrozavodsk State Uneversity, Petrozavodsk, pp 266–269Google Scholar
  12. Dzyuba OF (1988) Эволюция ландшафтов верховых болотных систем юго-западного Приильменья в послеледниковое время (Landscape evolution of ombrotrophic mire systems on the south-west of Priilmen Lowland in the Holocene, in Russian). Dissertation, LeningradGoogle Scholar
  13. Elina GA, Filimonova LV (1996) Russian Karelia. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15,000 years: regional syntheses of palaeoecological studies of lakes and mires Europe. Wiley, Chichester, pp 353–366Google Scholar
  14. Elina GA, Lukashov AD, Yurkovskaya TK (2010). Late Glacial and Holocene palaeogeography of eastern Fennoscandia. The Finnish Environment Institute, HelsinkiGoogle Scholar
  15. Elina G, Yurkovskaya T (1992) Методы определения палеогидрологического режима как основа объективизации причин сукцессий растительности болот (Methods of palaeohydrological regime determination as a basis for objectivization of causes of mire vegetation successions, in Russian, English abstract). Russ Bot J 77:120–124Google Scholar
  16. Elovicheva YK, Bogdel I (1987) Reconstruction of palaeoclimate and vegetation of the Byelorussian Holocene using bog and lake deposit data. In: Raukas A, Saarse L (eds) Palaeohydrology of the temperate zone III, mires and lakes. Valgus, Tallinn, pp 152–156Google Scholar
  17. Erdtman G (1960) The acetolysis method—a revised description. Sven Bot Tidskr 54:516–564Google Scholar
  18. Eremeev I, Dzjuba OF (2010) Очерки исторической географии лесной части Пути из варяг в греки. Археологические и палеогеографические исследования между Западной Двиной и озером Ильмень (Notes on historical geography of the forest part of the road from the Varangians to Greeks: archaeological and paleogeographical researches between the Western Dvina and Ilmen lake, in Russian with English abstract). Nestor-History, St. PetersburgGoogle Scholar
  19. Eremeev II, Dzyuba OF, Lisitsyna OV, Buben’ko OV, Podgursky PN (2009) New evidence of initial agriculture in the Western Dvina basin. Quat Int 203:67–73CrossRefGoogle Scholar
  20. Grichuk VP, Zaklinskaya ED (1948) Анализ ископаемых пыльцы и спор и его применение в палеогеографии (Analysis of fossil pollen and spores and use of it in palaeogeography, in Russian). Geografgiz, MoscowGoogle Scholar
  21. Grimm EC (1991) Tilia and TiliaGraph (software). Illinois State Museum, Springfield, USAGoogle Scholar
  22. Guman MA (1978) Антропогенные изменения растительности юга Псковской области в голоцене (по палинологическим данным) (Anthropogenic vegetation changes in the south of Pskov region (based on palynological data, in Russian with English abstract). Russ Bot J 63:1,415–1,429Google Scholar
  23. Ilves E, Maemets H (1987) Results of radiocarbon and palynological analyses of coastal deposits of lakes Tuuljarv and Vaskna. In: Raukas A, Saarse L (eds) Palaeohydrology of the temperate zone III: mires and lakes. Tallinn, Valgus, pp 108–130Google Scholar
  24. Isachenko AG (1995) Экологическая география Северо-Запада России (Ecological geography of North-West Russia). RGO, St. Petersburg (In Russian) Google Scholar
  25. Jankovská V, Vasari Y, Elina G, Kuznetskov O (1999) The Holocene palaeogeography of Paanajärvi National Park, Northwestern Russia. Fennia 177:71–82Google Scholar
  26. Jushkova MA (2011) Эпоха бронзы и ранний железный век на Северо-Западе России (Bronze Age and the early Iron Age in the northwest of Russia, in Russian). Doctoral dissertation, St Petersburg State UniversityGoogle Scholar
  27. Katz NJ, Katz SV, Skobeyeva EI (1977) Атлас растительных остатков в торфе (Atlas of plant remains in peat soil, in Russian). Nauka, MosсowGoogle Scholar
  28. Khotinskiy NA (1977) Голоцен Северной Евразии (The Holocene of North Eurasia, in Russian). Nauka, MoscowGoogle Scholar
  29. Klimanov VA (1984) Paleoclimatic reconstructions based on the information statistical method. In: Velichko AA (ed) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 297–304Google Scholar
  30. Klimanov VA, Serebryannaya TA (1986) Изменения растительности и климата на Среднерусской возвышенности в голоцене (Vegetation changes and climate of the Mid-Russian upland in the Holocene, in Russian with English abstract). Rep Acad Sci of USSR Ser Geogr 2:93–102Google Scholar
  31. Klimenko V, Klimanov V, Sirin A, Sleptsov A (2001) Climate changes in Western European Russia in the late Holocene, in Russian with English abstract. Dokl Earth Sci 377:190–194)Google Scholar
  32. Kozharinov AV, Sirin AA, Klimenko VV, Klimanov VA, Maliasova ES, Sleptsov AM (2003) Динамика растительного покрова и климата Западнодвинской низины (Тверская область) за последние 5 тысяч лет (5000 years vegetation and climate dynamics in the Zapadnodvinskaya Lowlands, Tver region, in Russian with English abstract. Russ Bot J 88:90–102)Google Scholar
  33. Krivenko VG, Petrunin VB (2000). Wetlands in Russia: wetlands on the Ramsar Shodow list. Wetlands International Global Series, MoscowGoogle Scholar
  34. Kucherov IB, Tarasevich VF, Mikhailova ER (2000) Растительность, климат и культурная флора севера Псковской области в конце I тысячелетия н. э. по данным спорово-пыльцевого анализа (Vegetation, climate and cultivated plants in the north of Pskov region at the end of 1st millenium AD, based on palynological data, in Russian with English abstract). Russ Bot J 85:26–45Google Scholar
  35. Manakov AG, Evdokimov SI (2012) Динамика численности, естественное и механическое движение населения Псковского региона (XVI-начало XXI вв.) (Dynamics, natural and mechanical movement of the population of the Pskov region (16th to beginning of the 21st century), in Russian with English abstract). Bull Pskov State Univ Ser Nat Phys Math Sci 1:91–103Google Scholar
  36. Mikliaev AM (1994) Каменный-железный век в междуречье Западной Двины и Ловати (Stone and Iron Ages on the watershed of Western Dvina and Lovat’, in Russian). St Petersburg Archaeol Bull 9:7–39Google Scholar
  37. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  38. Nakagawa T, Tarasov PE, Nishida K, Gotanda K, Yasuda Y (2002) Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat Sci Rev 21:2,099–2,113CrossRefGoogle Scholar
  39. Niinemets E, Saarse L (2009) Holocene vegetation and land-use dynamics of south-eastern Estonia. Quat Int 207:104–116CrossRefGoogle Scholar
  40. Niinemets E, Saarse L, Poska A (2002) Vegetation history and human impact in the Parika area, Central Estonia. Proc Estonian Acad Sci Geol 51:241–258Google Scholar
  41. Nosova MB, Severova EE, Volkova OA, Kosenko JV (2015) Representation of Picea pollen in modern and surface samples from Central European Russia. Veget Hist Archaeobot 24:319–330CrossRefGoogle Scholar
  42. Nosova MB, Severova EE, Volkova OA (2017) A 6500-year pollen record from the Polistovo-Lovatskaya Mire System (North-West European Russia). Vegetation dynamics and signs of human impact. Grana 56:410–423CrossRefGoogle Scholar
  43. Novenko EY (2016) Изменения растительности и климата Центральной и Восточной Европы в позднем плейстоцене и голоцене в межледниковые и переходные этапы климатических макроциклов (Vegetation and climate changes in the Central and Eastern Europe in the Late Pleistocene and Holocene at interglacial and transitional stages of climatic macro-cycles, in Russian with English abstract). GEOS, MoscowGoogle Scholar
  44. Novenko EY, Eremeeva AP, Chepurnaya AA (2014) Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Veget Hist Archaeobot 23:109–119CrossRefGoogle Scholar
  45. Novenko EY, Tsyganov AN, Volkova EM, Babeshko KV, Lavrentiev NV, Payne RJ, Mazei YA (2015) The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quat Res 83:459–468CrossRefGoogle Scholar
  46. Novenko EY, Volkova EM, Nosova NB, Zuganova IS (2009) Late Glacial and Holocene landscape dynamics in the southern taiga zone of the East European plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quat Int 207:93–103CrossRefGoogle Scholar
  47. Oshibkina SV (1989) The material culture of the veretye-type sites in the region to the east of Lake Onega. In: Bonsall C (ed) The mesolithic in Europe. John Donald, Edinburgh, pp 402–413Google Scholar
  48. Overpeck JT, Webb T III, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108CrossRefGoogle Scholar
  49. Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1,872–1,885CrossRefGoogle Scholar
  50. Poska A, Saarse L (1999) Holocene vegetation and land-use history in the environs of Lake Kahala, Northern Estonia. Veget Hist Archaeobot 8:185–197CrossRefGoogle Scholar
  51. Poska A, Saarse L, Koppel K, Nielsen AB, Avel E, Vassiljev J, Väli V (2014) The Verijärv area, South Estonia over the last millennium: a high resolution quantitative land-cover reconstruction based on pollen and historical data. Rev Palaeobot Palynol 207:5–17CrossRefGoogle Scholar
  52. Ralska-Jasiewiczowa M, Nalepka D, Goslar T (2003) Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veget Hist Archaeobot 12:233–247CrossRefGoogle Scholar
  53. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  54. Saarse L, Rajamäe R (1997) Holocene vegetation and climatic change on the Haanja Heights, SE Estonia. Proc Est Acad Sci Geol 46:75–92Google Scholar
  55. Safronova IN, Yurkovskaya TK, Mikliaeva IM, Ogureeva GN (1999) Карта «Зоны и типы поясности растительности России и сопредельных территорий»(1: 8 000 000) (Zones and types of zonation of vegetation of Russia and adjacent territories. Scale 1: 8000000. Map: 2 sheets). (Explanation and legend for the map, in Russian). Geography Department, MSU8, MoscowGoogle Scholar
  56. Sapelko T (2012) Holocene natural and man-made environmental change as recorded in lake sediments of NW Russia. Quat Int 279:280–427Google Scholar
  57. Sarmaja-Korjonen K, Seppä H (2007) Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland. Holocene 17:457–467CrossRefGoogle Scholar
  58. Seppä H, Poska A (2004) Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat Res 61:22–31CrossRefGoogle Scholar
  59. Sergeeva L, Khomutova V, Trifonova I (1987) Paleogeographical stages in the development of Latgale lakes. In: Raukas A, Saarse L (eds) Palaeohydrology of the temperate zone 2. Valgus, Tallinn, pp 154–163Google Scholar
  60. Shitov MV (2007) Голоценовые трансгрессии Ладожского озера (Holocene transgressions of Ladoga lake, in Russian). Doctoral dissertation, St. PetersburgGoogle Scholar
  61. Stančikaité M, Kisielienë D, Simniškytė A (2004) Vegetation response to the climatic and human impact changes during the Late Glacial and Holocene: case study of the marginal area of Baltija Upland, NE Lithuania. Baltica 17:17–33Google Scholar
  62. Stankevica K, Kalnina L, Klavins M, Cerina A, Ustupe L, Kaup E (2015) Reconstruction of the Holocene palaeoenvironmental conditions accordingly to the multiproxy sedimentary records from Lake Pilvelis, Latvia. Quat Int 386:102–115CrossRefGoogle Scholar
  63. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  64. Subetto DA (2009) Донные отложения озер: палеолимнологические реконструкции (Deposits of lakes: paleolimnological reconstruction, in Russian). Russian State Pedagogical Gertsen University, St. PetersburgGoogle Scholar
  65. Subetto DA, Wohlfarth B, Davydova NN et al (2002) Climate and environment on the Karelian Isthmus, Northwestern Russia, 13000–9000 cal yrs bp. Boreas 31:1–19CrossRefGoogle Scholar
  66. Sukachev VN (1910) Предварительный отчет об исследовании болот Псковской губернии летом 1090 г. (Preliminary report on research into bogs of the Pskov province in the summer of 1909, in Russian). PskovGoogle Scholar
  67. Troels-Smith J (1984) Stall-feeding and field-manuring in Switzerland about 6000 years ago. Tools & Tillage 5:13–25Google Scholar
  68. Tyuremnov SN (1976) Торфяные месторождения (Peat deposits, in Russian). Nedra, MoscowGoogle Scholar
  69. Vasilieva NV, Subetto DA, Verbitskiy VR, Krotova-Putintseva AE (2012) History of formation of Ilmen’-Volkhov basin. News Russ State Pedagog Gertsen Univ 153:141–150Google Scholar
  70. Velichko AA (2009) Палеоклиматы и палеоландшафты внетропического пространства Северного полушария. Поздний плейстоцен - голоцен. Атлас-монография. (Paleoclimates and paleoenvironments of extra-tropical regions of the Northern Hemisphere. Late Pleistocene—Holocene. Atlas-Monograph. in Russian). GEOS, MoscowGoogle Scholar
  71. Veski S, Seppä H, Ojala AE (2004) Cold event at 8200 year bp recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684CrossRefGoogle Scholar
  72. Vuorela I (1986) Palynological and historical evidence of slash-and-burn cultivation in South Finland. In: Behre K-E (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 53–64Google Scholar
  73. Witte HJL, van Geel B (1985) Vegetational and environmental succession and net organic production between 4500 and 800 b.p. reconstructed from a peat deposit in the western Dutch coastal area (Assendelver polder). Rev Palaeobot Palynol 45:239–300CrossRefGoogle Scholar
  74. Yanin VL (ed) (2012) Археология (Archaeology, in Russian). Moscow University Press, MoscowGoogle Scholar
  75. Zernitskaya VP (1991) Палеогеография Белорусского Полесья в позднеледниковье и голоцене (по данным спорово-пыльцевого анализа) (Palaeogeography of the Byelorussian Polessie in the Late Glacial and Holocene, in Russian). Dissertation, Minsk UniversityGoogle Scholar
  76. Zernitskaya V, Mikhailov N (2009) Evidence of early farming in the Holocene pollen spectra of Belarus. Quat Int 203:91–104CrossRefGoogle Scholar
  77. Zernitskaya VP, Novenko EY (2016) Реконструкция климата Беларуси в позднеледниковье и голоцене (The reconstruction of Late Glacial and Holocene climate of Belorussia, in Russian with English abstract). Sci Innovations 9:21–24Google Scholar
  78. Zvelebil M (2008) Innovating hunter-gatherers: the Mesolithic in the Baltic. In: Bailey G, Spikins P (eds) Mesolithic Europe. Cambridge University Press, Cambridge, pp 18–59Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Main Botanical Garden RASMoscowRussia
  2. 2.Faculty of GeographyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Biology FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations