Persistence of a vegetation mosaic in a peripheral region: could turbulent medieval history disrupt Holocene continuity of extremely species-rich grasslands?

Abstract

Fluctuations in intensity of human impact and corresponding vegetation changes have been reported from different parts of Europe for the period from the beginning of the 1st millennium ad to the high Middle Ages. In the Bílé Karpaty mountains (White Carpathians), a region well-known for its biologically valuable ancient grasslands, an extensive spread of woodland could have occurred in the Migration period (4th–6th century) and especially in the Confinium period (11th–12th century), when settling of this border region was legally prohibited. However, Holocene continuity of non-woodland vegetation was suggested as an explanation for the unique species richness of the local grasslands. If this explanation is true, then the turbulent times in medieval history could not have led to complete re-establishment of woodland. To test this idea palaeoecologically, we analysed four new profiles from wetland deposits for pollen, macrofossils and abiotic proxies, and re-dated some old profiles from the area. The results show the continual presence of human impact indicators since the Migration period in the southwest of the Bílé Karpaty, where these unique grasslands occur. Agricultural activities were indicated by pollen of crops, ruderals, weeds and grassland taxa and by macrofossils of fen-grassland plants. Grazing and burning seem to have been the main disturbances during the older period, while mowing of meadows by scythe became more important since the 17th century. Fossil records differed among the sites as a consequence of differences in altitude and disturbance regimes, but converged gradually with time. Despite intensification of human activities, the landscape remained mosaic-like. Indicators of undisturbed woodlands have been detected only in the northeast. Continuous yet perhaps never too intensive disturbances might therefore have maintained the ancient grassland species pool in the long term.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bakker JP, Elzinga JA, De Vries Y (2002) Effects of long-term cutting in a grassland system: perspectives for restoration of plant communities on nutrient-poor soils. Appl Veget Sci 5:107–120

    Google Scholar 

  2. Barthelmes A, Prager A, Joosten H (2006) Palaeoecological analysis of Alnus wood peats with special attention to non-pollen palynomorphs. Rev Palaeobot Palynol 141:33–51

    Article  Google Scholar 

  3. Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link? Quat Int 105:7–12

    Article  Google Scholar 

  4. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  5. Brandl V (ed) (1873) Books of land/common law, vol 1. Brunae, Břeža, Winiker et soc

  6. Brandl V (ed) (1878) Codex diplomaticus et epistolaris, vol 10. Brunae, Břeža, Winiker et soc, pp 1,367–1,375

  7. Bronk Ramsey C (2009a) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  8. Bronk Ramsey C (2009b) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1,023–1,045

    Article  Google Scholar 

  9. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland (Digital seed atlas of The Netherlands). Barkhuis Publishing, Groningen

    Google Scholar 

  10. Cendelín D (2011) Kosmas k roku 1116: Interpretace historické události v reflexi krajiny Moravsko-slovenského pomezí (Cosmas about 1116: interpretation of a historic event in the reflection of the landscape on the Moravian-Slovak border, in Czech). Hist Geogr 37:7–48

    Google Scholar 

  11. Červinka IL (1893) Římské mince na Moravě nalezené (Roman coins found in the Moravia., in Czech (ed)). Časopis Vlasteneckého Musejního Spolku v Olomouci 10:68–70, 113, 161–164

    Google Scholar 

  12. Červinka IL (1927) Pravěk zemí českých. Úvod do archeologie pravěké, předvěké a historické (Prehistory of the Czech countries. Introduction to prehistoric archaeology, in Czech). Pravěk:25–27

  13. Chrastina P (2009) Vývoj využívania krajiny Trenčianskej kotliny a jej horskej obruby (Genesis of land-use in the Trenčianska kotlina and its surrounding mountains, in Slovak). Univerzita Konštantína Filozofa, Nitra

    Google Scholar 

  14. Chytrý M, Dražil T, Hájek M et al (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278

    Google Scholar 

  15. Collins B, Battaglia LL (2008) Oak regeneration in southeastern bottomland hardwood forest. For Ecol Manag 255:3,026–3,034

    Article  Google Scholar 

  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1,302–1,310

    Article  Google Scholar 

  17. Dostál B (1966) Slovanská pohřebiště ze střední doby hradištní (Slavic burial grounds from the Middle Hillfort period, in Czech). Academia, Praha

    Google Scholar 

  18. Dudová L, Hájková P, Opravilová V, Hájek M (2014) Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies. Quat Res 82:107–120

    Article  Google Scholar 

  19. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis. 4th edn. Wiley, Chichester

    Google Scholar 

  20. Fajmonová Z, Zelený D, Syrovátka V, Vončina G, Hájek M (2013) Distribution of habitat specialists in semi-natural grasslands. J Veget Sci 24:616–627

    Article  Google Scholar 

  21. Feurdean A, Spessa A, Magyari EK, Willis KJ, Veres D, Hickler T (2012) Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat Sci Rev 45:111–125

    Article  Google Scholar 

  22. Fredh D, Mazier F, Bragée P, Lagerås P, Rundgren M, Hammarlund D, Broström A (2017) The effect of local land-use changes on floristic diversity during the past 1,000 years in southern Sweden. Holocene 27:694–711. https://doi.org/10.1177/0959683616670464

    Article  Google Scholar 

  23. Frodlová J, Hájková P, Horsák M (2017) Effect of sample size and resolution on palaeomalacological interpretation: a case study from Holocene calcareous-fen deposits. J Quat Sci. https://doi.org/10.1002/jqs.2999

    Google Scholar 

  24. Galvánek D, Lepš J (2012) The effect of management on productivity, litter accumulation and seedling recruitment in a Carpathian mountain grassland. Plant Ecol 213:523–533

    Article  Google Scholar 

  25. Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, Springfield

    Google Scholar 

  26. Hájek M (1998) Mokřadní vegetace Bílých Karpat (The wetland vegetation in the White Carpathians, in Czech). 1. vyd. Uherské Hradiště, Suppl 4. Sborník Přírodovědného klubu v Uherském Hradišti

  27. Hájek M, Dresler P, Hájková P, Hettenbergerová E, Milo P. Plesková Z, Pavonič M (2017) Long-lasting imprint of former glassworks on vegetation pattern in an extremely species-rich grassland: a battle of species pools on mesic soils. Ecosystems. https://doi.org/10.1007/s10021-017-0107-2

    Google Scholar 

  28. Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M (2016) Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quat Sci Rev 133:48–61

    Article  Google Scholar 

  29. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755

    Article  Google Scholar 

  30. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelánková B (2012) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41:690–706

    Article  Google Scholar 

  31. Hájková P, Jamrichová E, Horsák M, Hájek M (2013) Holocene history of a Cladium mariscus-dominated calcareous fen in Slovakia: vegetation stability and landscape development. Preslia 85:289–315

    Google Scholar 

  32. Hájková P, Roleček J, Hájek M, Horsák M, Fajmon K, Polák M, Jamrichová E (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204

    Google Scholar 

  33. Hanák K (1938) Předhistorické nálezy a výkopy v r. 1937 (Prehistoric finds and excavations, in Czech). Sborník Velehradský 9:28

    Google Scholar 

  34. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  35. Holliday VT (2004) Soils in archaeological research. Oxford University Press, Oxford

    Google Scholar 

  36. Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:106–101,114

    Article  Google Scholar 

  37. Horsák M, Hájková P (2005) The historical development of the White Carpathian spring fens based on palaeomalacological data. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc, pp 63–68

    Google Scholar 

  38. Hosák L, Šrámek R (1970) Místní jména na Moravě a ve Slezsku I (Local names in Moravia and Silesia, in Czech (ed)). Academia, Praha

    Google Scholar 

  39. Hosák L, Šrámek R (1980) Místní jména na Moravě a ve Slezsku II (Local names in Moravia and Silesia, in Czech). Academia, Praha

    Google Scholar 

  40. Jamrichová E, Hájková P, Horsák M, Rybníčková E, Lacina A, Hájek M (2014) Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Veget Hist Archaeobot 23:497–513

    Article  Google Scholar 

  41. Jongepier JW, Pechanec V (2006) Atlas rozšíření cévnatých rostlin CHKO Bílé Karpaty (Distribution atlas of vascular plants of the White Carpathians protected landscape area, in Czech). ZO ČSOP Bílé Karpaty, Veselí nad Moravou

    Google Scholar 

  42. Jongepierová I, Deván P, Devánová K (2008) Grassland management. In: Jongepierová (ed) Grasslands of the White Carpathian mountains. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, pp 433–444

    Google Scholar 

  43. Juggins S (2003) C2 User guide, version 1.5. Software for ecological and paleoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  44. Klimeš L, Hájek M, Mudrák O et al (2013) Effects of changes in management on resistance and resilience in three grassland communities. Appl Veget Sci 16:640–649

    Article  Google Scholar 

  45. Kuneš P, Svobodová-Svitavská H, Kolář J et al (2015) The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quat Sci Rev 116:15–27

    Article  Google Scholar 

  46. Ložek V (2008) Development after the ice age. In: Jongepierová (ed) Grasslands of the White Carpathian mountains. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, pp 24–28

    Google Scholar 

  47. Macháček J (2014) Strážci hranic: Sikulové a Pečeněhové na řece Moravě (Border guard: Székelys and Pechenegs on the river Morava, in Czech). Dějiny Současnost 7:18–21

    Google Scholar 

  48. Michalcová D, Chytrý M, Pechanec V et al (2014) High plant diversity of grasslands in a landscape context: a comparison of contrasting regions in central Europe. Folia Geobot 49:117–135

    Article  Google Scholar 

  49. Mitáček J (2008) Campus Lucsco—proměny jedné otázky (Campus Lucsko—transformation of one question, in Czech). In: Mitáček (ed) Východní Morava v 10. až 14. Století (Eastern Moravia in the 10th to 14th century, in Czech). Moravské zemské muzeum, Brno, pp 155–167

    Google Scholar 

  50. Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ (2015) High nature value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1,073–1,081

    Article  Google Scholar 

  51. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  52. Moutelíková J (2015) Paleomalakologická analýza sedimentů pěnovcového slatiniště holocenního stáří: vliv velikosti vzorků, členění vrstev a prostorové variability (Palaeomalacological analysis of calcareous fen sediments of the Holocene age: the effect of volume size, resolution and spatial variability, in Czech). Master thesis. Masaryk University, Brno

  53. Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science—a review. Eur J Soil Sci 28:223–246

    Article  Google Scholar 

  54. Nalepka D, Walanus A (2003) Data processing in pollen analysis. Acta Palaeobot 43:125–134

    Google Scholar 

  55. Nekuda V (ed) (1982) Uherskohradišťsko (Uherské Hradiště, in Czech), vol 63. Muzejní a vlastivědná společnost v Brně, Brno

    Google Scholar 

  56. Nešporová T (2004) Novšie nálezy z obdobia popolnicových polí a doby halštatskej na strednom Považí (More recent findings from the period of Urnfields and Hallstadt period in the Middle Považie region, in Slovak). Študijné Zvesti AÚ Sav 36:93–104

    Google Scholar 

  57. Neuhäuslová Z (ed) (1998) Mapa potenciální přirozené vegetace České republiky 1:500 000 (Map of the potential natural vegetation of the Czech Republic 1:500,000). Academia, Praha

    Google Scholar 

  58. Otýpková Z, Chytrý M, Tichý L, Pechanec V, Jongepier JW, Hájek O (2011) Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia 66:266–274

    Article  Google Scholar 

  59. Overland A, O’Connell M (2011) New insights into late Holocene farming and woodland dynamics in western Ireland with particular reference to the early medieval horizontal watermill at Kilbegly, Co. Roscommon. Rev Palaeobot Palynol 163:205–226

    Article  Google Scholar 

  60. Pauli D, Peintinger M, Schmid B (2002) Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic Appl Ecol 3:255–266

    Article  Google Scholar 

  61. Peco B, Sánchez AM, Azcárate FM (2006) Abandonment in grazing systems, consequences for vegetation and soil. Agric Ecosyst Environ 113:284–294

    Article  Google Scholar 

  62. Peškař I (1974) Sídlištní nálezy z doby římské v katastru obce Horní Němčí (Settlement records from the Horní Němčí cadastre dated to the Roman Empire, in Czech). Zdrojový dokument: Přehled výzkumů 1973, pp 52–53

  63. Pokorný P (2004) Postglacial vegetation distribution in the Czech Republic and its relationship to settlement zones: review from off-site pollen data. In: Gojda M (ed) Ancient landscape, settlement dynamics and non-destructive archaeology. Academia, Praha, pp 395–414

    Google Scholar 

  64. Pokorný P, Boenke N, Chytráček M et al (2006) Insight into the environment of a pre-Roman Iron Age hillfort at Vladař, Czech Republic, using a multi-proxy approach. Veget Hist Archaeobot 15:419–433

    Article  Google Scholar 

  65. Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? Holocene 25:716–726

    Article  Google Scholar 

  66. Punt W, Clarke GCS (eds) (1984) The northwest European pollen flora, vol 4. Elsevier, Amsterdam

    Google Scholar 

  67. Punt W, Hoen PP (1995) Caryophyllaceae. (The northwest European pollen flora 56). Rev Palaeobot Palynol 88:83–272

    Article  Google Scholar 

  68. Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord. Suppl 1. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  69. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887

    Article  Google Scholar 

  70. Roleček J (2013) Thermophilous oak forests. Quercetea pubescentis. In: Chytrý M (ed) Vegetation of the Czech Republic 4: forest and scrub vegetation. Academia, Praha, pp 296–337

    Google Scholar 

  71. Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34

    Google Scholar 

  72. Roleček J, Hájek M, Karlík P, Novák J (2015) Reliktní vegetace na mezických stanovištích (Relict vegetation on mesic sites, in Czech). Zprávy České Botanické Společnosti 50:201–245

    Google Scholar 

  73. Rosenthal G (2010) Secondary succession in a fallow central European wet grassland. Flora 205:153–160

    Article  Google Scholar 

  74. Rousseau DD, Schevin P, Ferrier J et al (2008) Long distance pollen transport from North America to Greenland in spring. J Geophys Res Biogeosci 113(G2):1–10

    Article  Google Scholar 

  75. Rybníček K, Rybníčková E (2008) Upper Holocene dry land vegetation in the Moravian-Slovakian borderland (Czech and Slovak Republic). Veget Hist Archaeobot 17:701–711

    Article  Google Scholar 

  76. Rybníčková E, Hájková P, Rybníček K (2005) The origin and development of spring fen vegetation and ecosystems—palaeogeobotanical results. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens of the West Carpathians. Palacký University, Olomouc, pp 29–62

    Google Scholar 

  77. Sádlo J, Pokorný P, Hájek P, Dreslerová D, Cílek V (2005) Krajina a revoluce. Významné přelomy ve vývoji kulturní krajiny českých zemí (Landscape and revolution. Important turning points in the development of the Czech cultural landscape, in Czech). Malá Skála, Praha

  78. Schweingruber FH (1978) Microscopic wood anatomy. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf

    Google Scholar 

  79. Shakesby RA, Smith JG, Matthews JA et al (2007) Reconstruction of Holocene glacier history from distal sources: glaciofluvial stream-bank mires and the glaciolacustrine sediment core near Sota Sæter, Breheimen, southern Norway. Holocene 17:729–745

    Article  Google Scholar 

  80. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge

    Google Scholar 

  81. Smith AJE (1996) The moss flora of Britain and Ireland. Cambridge University Press, Cambridge

    Google Scholar 

  82. Staňa Č (1960) Terénní průzkum v Kozojídkách, okr. Veselí n. Mor. (Field research in the Kozojídky, Veselí nad Moravou district, in Czech), Přehled výzkumů 1959, p 159

  83. Stivrins N, Brown A, Veski S et al (2016) Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th–16th century) northern Latvia, eastern Baltic. Holocene 26:61–69

    Article  Google Scholar 

  84. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  85. Šútor M (2012) Prehistorické osídlenie a prírodné podmienky stredného Považia (Prehistoric settlement and natural conditions of the middle river Váh valley, in Slovak). Master Thesis, Univerzita Konštantína Filozofa, Nitra

  86. Szentpétery I (1923) Az Árpád-házi királyok okleveleinek kritikai jegyzéke, I.kötet (A critical list of the diplomas of the Árpád kings, in Hungarian). Füzet, vol 1. Magyar Tudományos Akadémia, Budapest, pp 110–111

  87. Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P (2016) Grazing vs. mowing: a meta-analysis of biodiversity benefits for grassland management. Agric Ecosyst Environ 222:200–212

    Article  Google Scholar 

  88. Tichý L (2005) New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol 179:67–72

    Article  Google Scholar 

  89. Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Atlas podnebí Česka (Czech climate atlas). Czech Hydrometeorological Institute, Praha

    Google Scholar 

  90. Valkó O, Deák B, Magura T et al (2016) Supporting biodiversity by prescribed burning in grasslands—a multi-taxa approach. Sci Total Environ 572:1,377–1,384

    Article  Google Scholar 

  91. Van Geel B, Bohncke SJP, Dee H (1980) A palaeoecological study of an upper Late Glacial and Holocene sequence from ‘de Borchert’, The Netherlands. Rev Paleobot Palynol 31:367–448

  92. Wagner S, Litt T, Sánchez-Goñi MF, Petit RJ (2015) History of Larix decidua Mill. (European larch) since 130 ka. Quat Sci Rev 124:224–247

    Article  Google Scholar 

  93. Wieckowska M, Dörfler W, Kirleis W (2012) Vegetation and settlement history of the past 9,000 years as recorded by lake deposits from Großer Eutiner See (Northern Germany). Rev Palaeobot Palynol 174:79–90

    Article  Google Scholar 

  94. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Masaryk University (Project no. MUNI/M/1790/2014). Analysis of modern pollen spectra has been supported by the Czech Science Foundation (GA ČR 16-10100S). PH, EJ, LD and JR were partially supported by a long-term developmental project of the Czech Academy of Sciences (RVO 67985939). We are grateful to colleagues and friends who helped us with coring in the field (P. Kuneš, B. Werchan, M. Lamentowicz, Jakub Roleček, K. Fajmon), provided valuable comments on regional history (J. Mitáček, J. Macháček, M. Ďuga, P. Szabó), helped with the review of archaeological data (B. Machová, M. Vágner) or sampled recent pollen and vegetation and willingly provided us with unpublished data (B. Werchan and Z. Plesková). Michal Horsák kindly provided identified snail shells from his personal collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petra Hájková.

Additional information

Communicated by F. Bittmann.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hájková, P., Jamrichová, E., Petr, L. et al. Persistence of a vegetation mosaic in a peripheral region: could turbulent medieval history disrupt Holocene continuity of extremely species-rich grasslands?. Veget Hist Archaeobot 27, 591–610 (2018). https://doi.org/10.1007/s00334-017-0660-9

Download citation

Keywords

  • Human impact
  • Landscape history
  • Macrofossils
  • Multidimensional analysis
  • Pollen
  • White Carpathians