Advertisement

Vegetation History and Archaeobotany

, Volume 27, Issue 4, pp 591–610 | Cite as

Persistence of a vegetation mosaic in a peripheral region: could turbulent medieval history disrupt Holocene continuity of extremely species-rich grasslands?

  • Petra Hájková
  • Eva Jamrichová
  • Libor Petr
  • Lydie Dudová
  • Jan Roleček
  • Andrea Gálová
  • Petr Dresler
  • Jan Novák
  • Michal Hájek
Original Article

Abstract

Fluctuations in intensity of human impact and corresponding vegetation changes have been reported from different parts of Europe for the period from the beginning of the 1st millennium ad to the high Middle Ages. In the Bílé Karpaty mountains (White Carpathians), a region well-known for its biologically valuable ancient grasslands, an extensive spread of woodland could have occurred in the Migration period (4th–6th century) and especially in the Confinium period (11th–12th century), when settling of this border region was legally prohibited. However, Holocene continuity of non-woodland vegetation was suggested as an explanation for the unique species richness of the local grasslands. If this explanation is true, then the turbulent times in medieval history could not have led to complete re-establishment of woodland. To test this idea palaeoecologically, we analysed four new profiles from wetland deposits for pollen, macrofossils and abiotic proxies, and re-dated some old profiles from the area. The results show the continual presence of human impact indicators since the Migration period in the southwest of the Bílé Karpaty, where these unique grasslands occur. Agricultural activities were indicated by pollen of crops, ruderals, weeds and grassland taxa and by macrofossils of fen-grassland plants. Grazing and burning seem to have been the main disturbances during the older period, while mowing of meadows by scythe became more important since the 17th century. Fossil records differed among the sites as a consequence of differences in altitude and disturbance regimes, but converged gradually with time. Despite intensification of human activities, the landscape remained mosaic-like. Indicators of undisturbed woodlands have been detected only in the northeast. Continuous yet perhaps never too intensive disturbances might therefore have maintained the ancient grassland species pool in the long term.

Keywords

Human impact Landscape history Macrofossils Multidimensional analysis Pollen White Carpathians 

Notes

Acknowledgements

This study was funded by Masaryk University (Project no. MUNI/M/1790/2014). Analysis of modern pollen spectra has been supported by the Czech Science Foundation (GA ČR 16-10100S). PH, EJ, LD and JR were partially supported by a long-term developmental project of the Czech Academy of Sciences (RVO 67985939). We are grateful to colleagues and friends who helped us with coring in the field (P. Kuneš, B. Werchan, M. Lamentowicz, Jakub Roleček, K. Fajmon), provided valuable comments on regional history (J. Mitáček, J. Macháček, M. Ďuga, P. Szabó), helped with the review of archaeological data (B. Machová, M. Vágner) or sampled recent pollen and vegetation and willingly provided us with unpublished data (B. Werchan and Z. Plesková). Michal Horsák kindly provided identified snail shells from his personal collection.

Supplementary material

334_2017_660_MOESM1_ESM.pdf (47 kb)
Supplementary material 1 (PDF 46 KB)
334_2017_660_MOESM2_ESM.pdf (280 kb)
Supplementary material 2 (PDF 280 KB)
334_2017_660_MOESM3_ESM.doc (3.1 mb)
Supplementary material 3 (DOC 3173 KB)
334_2017_660_MOESM4_ESM.doc (146 kb)
Supplementary material 4 (DOC 146 KB)
334_2017_660_MOESM5_ESM.doc (82 kb)
Supplementary material 5 (DOC 81 KB)
334_2017_660_MOESM6_ESM.doc (55 kb)
Supplementary material 6 (DOC 55 KB)
334_2017_660_MOESM7_ESM.doc (28 kb)
Supplementary material 7 (DOC 28 KB)

References

  1. Bakker JP, Elzinga JA, De Vries Y (2002) Effects of long-term cutting in a grassland system: perspectives for restoration of plant communities on nutrient-poor soils. Appl Veget Sci 5:107–120Google Scholar
  2. Barthelmes A, Prager A, Joosten H (2006) Palaeoecological analysis of Alnus wood peats with special attention to non-pollen palynomorphs. Rev Palaeobot Palynol 141:33–51CrossRefGoogle Scholar
  3. Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link? Quat Int 105:7–12CrossRefGoogle Scholar
  4. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Brandl V (ed) (1873) Books of land/common law, vol 1. Brunae, Břeža, Winiker et socGoogle Scholar
  6. Brandl V (ed) (1878) Codex diplomaticus et epistolaris, vol 10. Brunae, Břeža, Winiker et soc, pp 1,367–1,375Google Scholar
  7. Bronk Ramsey C (2009a) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  8. Bronk Ramsey C (2009b) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1,023–1,045CrossRefGoogle Scholar
  9. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland (Digital seed atlas of The Netherlands). Barkhuis Publishing, GroningenGoogle Scholar
  10. Cendelín D (2011) Kosmas k roku 1116: Interpretace historické události v reflexi krajiny Moravsko-slovenského pomezí (Cosmas about 1116: interpretation of a historic event in the reflection of the landscape on the Moravian-Slovak border, in Czech). Hist Geogr 37:7–48Google Scholar
  11. Červinka IL (1893) Římské mince na Moravě nalezené (Roman coins found in the Moravia., in Czech (ed)). Časopis Vlasteneckého Musejního Spolku v Olomouci 10:68–70, 113, 161–164Google Scholar
  12. Červinka IL (1927) Pravěk zemí českých. Úvod do archeologie pravěké, předvěké a historické (Prehistory of the Czech countries. Introduction to prehistoric archaeology, in Czech). Pravěk:25–27Google Scholar
  13. Chrastina P (2009) Vývoj využívania krajiny Trenčianskej kotliny a jej horskej obruby (Genesis of land-use in the Trenčianska kotlina and its surrounding mountains, in Slovak). Univerzita Konštantína Filozofa, NitraGoogle Scholar
  14. Chytrý M, Dražil T, Hájek M et al (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278Google Scholar
  15. Collins B, Battaglia LL (2008) Oak regeneration in southeastern bottomland hardwood forest. For Ecol Manag 255:3,026–3,034CrossRefGoogle Scholar
  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1,302–1,310CrossRefGoogle Scholar
  17. Dostál B (1966) Slovanská pohřebiště ze střední doby hradištní (Slavic burial grounds from the Middle Hillfort period, in Czech). Academia, PrahaGoogle Scholar
  18. Dudová L, Hájková P, Opravilová V, Hájek M (2014) Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies. Quat Res 82:107–120CrossRefGoogle Scholar
  19. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis. 4th edn. Wiley, ChichesterGoogle Scholar
  20. Fajmonová Z, Zelený D, Syrovátka V, Vončina G, Hájek M (2013) Distribution of habitat specialists in semi-natural grasslands. J Veget Sci 24:616–627CrossRefGoogle Scholar
  21. Feurdean A, Spessa A, Magyari EK, Willis KJ, Veres D, Hickler T (2012) Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat Sci Rev 45:111–125CrossRefGoogle Scholar
  22. Fredh D, Mazier F, Bragée P, Lagerås P, Rundgren M, Hammarlund D, Broström A (2017) The effect of local land-use changes on floristic diversity during the past 1,000 years in southern Sweden. Holocene 27:694–711.  https://doi.org/10.1177/0959683616670464 CrossRefGoogle Scholar
  23. Frodlová J, Hájková P, Horsák M (2017) Effect of sample size and resolution on palaeomalacological interpretation: a case study from Holocene calcareous-fen deposits. J Quat Sci.  https://doi.org/10.1002/jqs.2999 Google Scholar
  24. Galvánek D, Lepš J (2012) The effect of management on productivity, litter accumulation and seedling recruitment in a Carpathian mountain grassland. Plant Ecol 213:523–533CrossRefGoogle Scholar
  25. Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, SpringfieldGoogle Scholar
  26. Hájek M (1998) Mokřadní vegetace Bílých Karpat (The wetland vegetation in the White Carpathians, in Czech). 1. vyd. Uherské Hradiště, Suppl 4. Sborník Přírodovědného klubu v Uherském HradištiGoogle Scholar
  27. Hájek M, Dresler P, Hájková P, Hettenbergerová E, Milo P. Plesková Z, Pavonič M (2017) Long-lasting imprint of former glassworks on vegetation pattern in an extremely species-rich grassland: a battle of species pools on mesic soils. Ecosystems.  https://doi.org/10.1007/s10021-017-0107-2 Google Scholar
  28. Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M (2016) Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quat Sci Rev 133:48–61CrossRefGoogle Scholar
  29. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755CrossRefGoogle Scholar
  30. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelánková B (2012) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41:690–706CrossRefGoogle Scholar
  31. Hájková P, Jamrichová E, Horsák M, Hájek M (2013) Holocene history of a Cladium mariscus-dominated calcareous fen in Slovakia: vegetation stability and landscape development. Preslia 85:289–315Google Scholar
  32. Hájková P, Roleček J, Hájek M, Horsák M, Fajmon K, Polák M, Jamrichová E (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204Google Scholar
  33. Hanák K (1938) Předhistorické nálezy a výkopy v r. 1937 (Prehistoric finds and excavations, in Czech). Sborník Velehradský 9:28Google Scholar
  34. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  35. Holliday VT (2004) Soils in archaeological research. Oxford University Press, OxfordGoogle Scholar
  36. Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:106–101,114CrossRefGoogle Scholar
  37. Horsák M, Hájková P (2005) The historical development of the White Carpathian spring fens based on palaeomalacological data. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc, pp 63–68Google Scholar
  38. Hosák L, Šrámek R (1970) Místní jména na Moravě a ve Slezsku I (Local names in Moravia and Silesia, in Czech (ed)). Academia, PrahaGoogle Scholar
  39. Hosák L, Šrámek R (1980) Místní jména na Moravě a ve Slezsku II (Local names in Moravia and Silesia, in Czech). Academia, PrahaGoogle Scholar
  40. Jamrichová E, Hájková P, Horsák M, Rybníčková E, Lacina A, Hájek M (2014) Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Veget Hist Archaeobot 23:497–513CrossRefGoogle Scholar
  41. Jongepier JW, Pechanec V (2006) Atlas rozšíření cévnatých rostlin CHKO Bílé Karpaty (Distribution atlas of vascular plants of the White Carpathians protected landscape area, in Czech). ZO ČSOP Bílé Karpaty, Veselí nad MoravouGoogle Scholar
  42. Jongepierová I, Deván P, Devánová K (2008) Grassland management. In: Jongepierová (ed) Grasslands of the White Carpathian mountains. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, pp 433–444Google Scholar
  43. Juggins S (2003) C2 User guide, version 1.5. Software for ecological and paleoecological data analysis and visualization. University of Newcastle, Newcastle upon TyneGoogle Scholar
  44. Klimeš L, Hájek M, Mudrák O et al (2013) Effects of changes in management on resistance and resilience in three grassland communities. Appl Veget Sci 16:640–649CrossRefGoogle Scholar
  45. Kuneš P, Svobodová-Svitavská H, Kolář J et al (2015) The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quat Sci Rev 116:15–27CrossRefGoogle Scholar
  46. Ložek V (2008) Development after the ice age. In: Jongepierová (ed) Grasslands of the White Carpathian mountains. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, pp 24–28Google Scholar
  47. Macháček J (2014) Strážci hranic: Sikulové a Pečeněhové na řece Moravě (Border guard: Székelys and Pechenegs on the river Morava, in Czech). Dějiny Současnost 7:18–21Google Scholar
  48. Michalcová D, Chytrý M, Pechanec V et al (2014) High plant diversity of grasslands in a landscape context: a comparison of contrasting regions in central Europe. Folia Geobot 49:117–135CrossRefGoogle Scholar
  49. Mitáček J (2008) Campus Lucsco—proměny jedné otázky (Campus Lucsko—transformation of one question, in Czech). In: Mitáček (ed) Východní Morava v 10. až 14. Století (Eastern Moravia in the 10th to 14th century, in Czech). Moravské zemské muzeum, Brno, pp 155–167Google Scholar
  50. Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ (2015) High nature value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1,073–1,081CrossRefGoogle Scholar
  51. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  52. Moutelíková J (2015) Paleomalakologická analýza sedimentů pěnovcového slatiniště holocenního stáří: vliv velikosti vzorků, členění vrstev a prostorové variability (Palaeomalacological analysis of calcareous fen sediments of the Holocene age: the effect of volume size, resolution and spatial variability, in Czech). Master thesis. Masaryk University, BrnoGoogle Scholar
  53. Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science—a review. Eur J Soil Sci 28:223–246CrossRefGoogle Scholar
  54. Nalepka D, Walanus A (2003) Data processing in pollen analysis. Acta Palaeobot 43:125–134Google Scholar
  55. Nekuda V (ed) (1982) Uherskohradišťsko (Uherské Hradiště, in Czech), vol 63. Muzejní a vlastivědná společnost v Brně, BrnoGoogle Scholar
  56. Nešporová T (2004) Novšie nálezy z obdobia popolnicových polí a doby halštatskej na strednom Považí (More recent findings from the period of Urnfields and Hallstadt period in the Middle Považie region, in Slovak). Študijné Zvesti AÚ Sav 36:93–104Google Scholar
  57. Neuhäuslová Z (ed) (1998) Mapa potenciální přirozené vegetace České republiky 1:500 000 (Map of the potential natural vegetation of the Czech Republic 1:500,000). Academia, PrahaGoogle Scholar
  58. Otýpková Z, Chytrý M, Tichý L, Pechanec V, Jongepier JW, Hájek O (2011) Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia 66:266–274CrossRefGoogle Scholar
  59. Overland A, O’Connell M (2011) New insights into late Holocene farming and woodland dynamics in western Ireland with particular reference to the early medieval horizontal watermill at Kilbegly, Co. Roscommon. Rev Palaeobot Palynol 163:205–226CrossRefGoogle Scholar
  60. Pauli D, Peintinger M, Schmid B (2002) Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic Appl Ecol 3:255–266CrossRefGoogle Scholar
  61. Peco B, Sánchez AM, Azcárate FM (2006) Abandonment in grazing systems, consequences for vegetation and soil. Agric Ecosyst Environ 113:284–294CrossRefGoogle Scholar
  62. Peškař I (1974) Sídlištní nálezy z doby římské v katastru obce Horní Němčí (Settlement records from the Horní Němčí cadastre dated to the Roman Empire, in Czech). Zdrojový dokument: Přehled výzkumů 1973, pp 52–53Google Scholar
  63. Pokorný P (2004) Postglacial vegetation distribution in the Czech Republic and its relationship to settlement zones: review from off-site pollen data. In: Gojda M (ed) Ancient landscape, settlement dynamics and non-destructive archaeology. Academia, Praha, pp 395–414Google Scholar
  64. Pokorný P, Boenke N, Chytráček M et al (2006) Insight into the environment of a pre-Roman Iron Age hillfort at Vladař, Czech Republic, using a multi-proxy approach. Veget Hist Archaeobot 15:419–433CrossRefGoogle Scholar
  65. Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? Holocene 25:716–726CrossRefGoogle Scholar
  66. Punt W, Clarke GCS (eds) (1984) The northwest European pollen flora, vol 4. Elsevier, AmsterdamGoogle Scholar
  67. Punt W, Hoen PP (1995) Caryophyllaceae. (The northwest European pollen flora 56). Rev Palaeobot Palynol 88:83–272CrossRefGoogle Scholar
  68. Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord. Suppl 1. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  69. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  70. Roleček J (2013) Thermophilous oak forests. Quercetea pubescentis. In: Chytrý M (ed) Vegetation of the Czech Republic 4: forest and scrub vegetation. Academia, Praha, pp 296–337Google Scholar
  71. Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34Google Scholar
  72. Roleček J, Hájek M, Karlík P, Novák J (2015) Reliktní vegetace na mezických stanovištích (Relict vegetation on mesic sites, in Czech). Zprávy České Botanické Společnosti 50:201–245Google Scholar
  73. Rosenthal G (2010) Secondary succession in a fallow central European wet grassland. Flora 205:153–160CrossRefGoogle Scholar
  74. Rousseau DD, Schevin P, Ferrier J et al (2008) Long distance pollen transport from North America to Greenland in spring. J Geophys Res Biogeosci 113(G2):1–10CrossRefGoogle Scholar
  75. Rybníček K, Rybníčková E (2008) Upper Holocene dry land vegetation in the Moravian-Slovakian borderland (Czech and Slovak Republic). Veget Hist Archaeobot 17:701–711CrossRefGoogle Scholar
  76. Rybníčková E, Hájková P, Rybníček K (2005) The origin and development of spring fen vegetation and ecosystems—palaeogeobotanical results. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens of the West Carpathians. Palacký University, Olomouc, pp 29–62Google Scholar
  77. Sádlo J, Pokorný P, Hájek P, Dreslerová D, Cílek V (2005) Krajina a revoluce. Významné přelomy ve vývoji kulturní krajiny českých zemí (Landscape and revolution. Important turning points in the development of the Czech cultural landscape, in Czech). Malá Skála, PrahaGoogle Scholar
  78. Schweingruber FH (1978) Microscopic wood anatomy. Swiss Federal Institute for Forest, Snow and Landscape Research, BirmensdorfGoogle Scholar
  79. Shakesby RA, Smith JG, Matthews JA et al (2007) Reconstruction of Holocene glacier history from distal sources: glaciofluvial stream-bank mires and the glaciolacustrine sediment core near Sota Sæter, Breheimen, southern Norway. Holocene 17:729–745CrossRefGoogle Scholar
  80. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  81. Smith AJE (1996) The moss flora of Britain and Ireland. Cambridge University Press, CambridgeGoogle Scholar
  82. Staňa Č (1960) Terénní průzkum v Kozojídkách, okr. Veselí n. Mor. (Field research in the Kozojídky, Veselí nad Moravou district, in Czech), Přehled výzkumů 1959, p 159Google Scholar
  83. Stivrins N, Brown A, Veski S et al (2016) Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th–16th century) northern Latvia, eastern Baltic. Holocene 26:61–69CrossRefGoogle Scholar
  84. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  85. Šútor M (2012) Prehistorické osídlenie a prírodné podmienky stredného Považia (Prehistoric settlement and natural conditions of the middle river Váh valley, in Slovak). Master Thesis, Univerzita Konštantína Filozofa, NitraGoogle Scholar
  86. Szentpétery I (1923) Az Árpád-házi királyok okleveleinek kritikai jegyzéke, I.kötet (A critical list of the diplomas of the Árpád kings, in Hungarian). Füzet, vol 1. Magyar Tudományos Akadémia, Budapest, pp 110–111Google Scholar
  87. Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P (2016) Grazing vs. mowing: a meta-analysis of biodiversity benefits for grassland management. Agric Ecosyst Environ 222:200–212CrossRefGoogle Scholar
  88. Tichý L (2005) New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol 179:67–72CrossRefGoogle Scholar
  89. Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Atlas podnebí Česka (Czech climate atlas). Czech Hydrometeorological Institute, PrahaGoogle Scholar
  90. Valkó O, Deák B, Magura T et al (2016) Supporting biodiversity by prescribed burning in grasslands—a multi-taxa approach. Sci Total Environ 572:1,377–1,384CrossRefGoogle Scholar
  91. Van Geel B, Bohncke SJP, Dee H (1980) A palaeoecological study of an upper Late Glacial and Holocene sequence from ‘de Borchert’, The Netherlands. Rev Paleobot Palynol 31:367–448Google Scholar
  92. Wagner S, Litt T, Sánchez-Goñi MF, Petit RJ (2015) History of Larix decidua Mill. (European larch) since 130 ka. Quat Sci Rev 124:224–247CrossRefGoogle Scholar
  93. Wieckowska M, Dörfler W, Kirleis W (2012) Vegetation and settlement history of the past 9,000 years as recorded by lake deposits from Großer Eutiner See (Northern Germany). Rev Palaeobot Palynol 174:79–90CrossRefGoogle Scholar
  94. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Laboratory of Paleoecology, Institute of BotanyThe Czech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Vegetation Ecology, Institute of BotanyThe Czech Academy of SciencesBrnoCzech Republic
  4. 4.Department of Archaeology and Museology, Faculty of ArtsMasaryk UniversityBrnoCzech Republic
  5. 5.LAPE, Department of Botany, Faculty of SciencesUniversity of South BohemiaCeske BudejoviceCzech Republic

Personalised recommendations