Vegetation History and Archaeobotany

, Volume 25, Issue 3, pp 221–236 | Cite as

Long-term forest composition and its drivers in taiga forest in NW Russia

  • Niina KuosmanenEmail author
  • Heikki Seppä
  • Triin Reitalu
  • Teija Alenius
  • Richard H. W. Bradshaw
  • Jennifer L. Clear
  • Ludmila Filimonova
  • Oleg Kuznetsov
  • Natalia Zaretskaya
Original Article


Understanding the processes behind long-term boreal forest dynamics can provide information that assists in predicting future boreal vegetation under changing environmental conditions. Here, we examine Holocene stand-scale vegetation dynamics and its drivers at the western boundary of the Russian taiga forest in NW Russia. Fossil pollen and conifer stomata records from four small hollow sites and two lake sites are used to reconstruct local vegetation dynamics during the Holocene. Variation partitioning is used to assess the relative importance of the potential drivers (temperature, forest fires and growing site wetness) to the long-term stand-scale dynamics in taiga forest. All the main tree taxa, including the boreal keystone species Picea abies (Norway spruce) and Larix sibirica (Siberian larch), have been locally present since 10,000 cal yr bp. The constant Holocene presence of L. sibirica at three small hollow sites suggests a fast postglacial immigration of the species in northern Europe. Picea was present but not dominant at all study sites until its expansion between 8,000 and 7,000 cal yr bp markedly changed the forest structure through the suppression of Betula (birch), Pinus (pine) and Larix. Our results demonstrate that in general, the Holocene forest dynamics in our study region have been driven by temperature, but during short intervals the role of local factors, especially forest fires, has been prominent. The comparison between sites reveals the importance of local factors in stand-scale dynamics in taiga forests. Therefore, the future responses of taiga forest to climate change will be predominantly modulated by the local characteristics at the site.


Variation partitioning Holocene Stand-scale dynamics Boreal biome Larix sibirica Picea abies 



We thank Olga Malozemova, Gleb Subetto, Nadezhda Maksutova and Dmitri Subetto for their great help with the organization, logistics and assistance during the fieldwork in the Vologda region, and István Cziczer and Bastian Niemeyer for assistance in the laboratory.

Supplementary material

334_2015_542_MOESM1_ESM.doc (825 kb)
Supplementary material 1 (DOC 825 kb)


  1. Aaby B, Tauber H (1975) Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Denmark. Boreas 4:1–14CrossRefGoogle Scholar
  2. Aakala T, Kuuluvainen T (2011) Summer droughts depress radial growth of Picea abies in pristine taiga of the Arkhangelsk province, northwestern Russia. Dendrochronologia 29:67–75CrossRefGoogle Scholar
  3. Aakala T, Kuuluvainen T, Wallenius T, Kauhanen H (2011) Tree mortality episodes in the intact Picea abies-dominated taiga in the Arkhangelsk region of northern European Russia. J Veget Sci 22:322–333CrossRefGoogle Scholar
  4. Aario L (1943) Über die Wald- und Klimaentwicklung an der Lappländischen Eismeerküste in Petsamo. Mit einem Beitrag zur Nord- und Mittel- Europäischen Klimageschichte. Vanamo 19:1–158Google Scholar
  5. Alenius T, Laakso V (2006) Palaeoecology and archaeology of the village of Uukunniemi, Eastern Finland. Acta Borealia 23:145–165CrossRefGoogle Scholar
  6. Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb T III (eds) Vegetation history. Kluwer Academic Publishers, Dordrecht, pp 633–672CrossRefGoogle Scholar
  7. Binney HA, Willis KJ, Edwards ME et al (2009) The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat Sci Rev 28:2,445–2,464CrossRefGoogle Scholar
  8. Birks HJB (1986) Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65Google Scholar
  9. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Q Geochronol 5:512–518CrossRefGoogle Scholar
  10. Blackford JJ, Chambers FM (1993) Determining the degree of peat decomposition for peat-based palaeoclimatic studies. Int Peat J 5:7–24Google Scholar
  11. Bonan GB (2008) Forest and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1,444–1,449CrossRefGoogle Scholar
  12. Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28CrossRefGoogle Scholar
  13. Bond WJ, Keeley JE (2005) Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394CrossRefGoogle Scholar
  14. Borcard D, Legendre P, Drapeu P (1992) Partialling out the spatial component of ecological varatiation. Ecology 73:1,045–1,055CrossRefGoogle Scholar
  15. Carcaillet C, Richard PJH, Bergeron Y, Fréchette B, Ali AA (2010) Resilience of the boreal forest in response to Holocene fire-frequency changes assessed by pollen diversity and population dynamics. Int J Wild Fire 19:1,026–1,039CrossRefGoogle Scholar
  16. Chambers FM, Beilman DW, Yu Z (2010) Methods for determaining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7:1–10Google Scholar
  17. Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual changes? AMBIO 33:361–365CrossRefGoogle Scholar
  18. Clayden SL, Cwynar LC, MacDonald GM, Velichko AA (1997) Holocene pollen and stomates from a forest-tundra site on the Taimyr Peninsula, Siberia. Arct Antarc Alp Res 29:327–333CrossRefGoogle Scholar
  19. Clear JL, Seppä H, Kuosmanen N, Bradshaw RHW (2013) Holocene fire frequency variability in Vesijako, Strict Nature Reserve, Finland, and its application to conservation and management. Biol Conserv 166:90–97CrossRefGoogle Scholar
  20. Clear JL, Seppä H, Kuosmanen N, Bradshaw RHW (2015) Holocene stand-scale vegetation dynamics and fire history of an old-growth spruce forest in southern Finland. Veget Hist Archaebot. doi: 10.1007/s00334-015-0533-z Google Scholar
  21. Demidov IN, Lavrova NB (2001) Quaternary cover structure in the Vodla River basin, Eastern Karelia, and the Late and Post-Glacial evolution of vegetation/Vodlozero national park: wildlife diversity and cultural heritage. Karelian Research Centre of RAS, Petrozavodsk, pp 49–60Google Scholar
  22. Devyatova EI (1986) Wildlife and its changes in the Holocene (northern and central Onega Lake shore). Karelia, Petrozavodsk (in Russian) Google Scholar
  23. Diekmann M (1996) Ecological behavior of deciduous hardwood trees in Boreo-nemoral Sweden in relation to light and soil conditions. For Ecol Manag 86:1–14CrossRefGoogle Scholar
  24. Drobyshev I, Niklasson M, Angelstam P (2004) Contrasting tree-ring data with fire record in a pine-dominated landscape in the Komi Republic (Eastern European Russia): recovering a common climate signal. Silva Fenn 38:43–53CrossRefGoogle Scholar
  25. Elina GE, Lukashov AD, Yurkovskaya TK (2010) Late Glacial and Holocene palaeogeography of Eastern Fennoscandia. The Finnish Environment 4. The Finnish Environment Institute, SastamalaGoogle Scholar
  26. Filimonova LV (2006) Detailed reconstruction of paleovegetion of poorly studied areas in northern and middle taiga of Eastern Fennoscandia//structure and dynamics of wetland and grassland ecosystems of Eatern Fennoscandia. Karelian Research Centre of RAS, Petrozavodsk, pp 129–161Google Scholar
  27. Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J Biogeogr 31:1,523–1,548CrossRefGoogle Scholar
  28. Goosse H, Brovkin V, Fichefet T et al (2010) Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev Discuss 3:309–390CrossRefGoogle Scholar
  29. Gorczynski L (1922) The calculation of the degree of continentality. Mon Weather Rev 7:370CrossRefGoogle Scholar
  30. Gower ST, Richards JH (1990) Larches: deciduous conifers in an evergreen world. BioScience 40:818–826CrossRefGoogle Scholar
  31. Gromtsev A (2002) Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn 36:41–55CrossRefGoogle Scholar
  32. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13,000 year ago. Cambridge University Press, CambridgeGoogle Scholar
  33. Hyvärinen H (1966) Studies on the late-Quaternary history of Pielis-Karelia, eastern Finland. Commentationes Biologicae 29:1–72Google Scholar
  34. Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology 26:194–220CrossRefGoogle Scholar
  35. Jacobson GL, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Q Res 16:80–96CrossRefGoogle Scholar
  36. Jalas J, Suominen J (eds) (1973) Atlas florae Europaeae: distribution of vascular plants in Europe. Vol 2: Gymnospermae (Pinaceae to Ephedraceae). The Committee for mapping the flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  37. Jowsey PC (1966) An improved peat sampler. New Phyt 65:245–248CrossRefGoogle Scholar
  38. Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data analysis and visualization. University of Newcastle upon Tyne, NewcastleGoogle Scholar
  39. Kanerva R (1956) Pollenanalytische Studien über die spätquartäre Wald- und Klimageschichte von Hyrynsalmi in NO-Finnland. Annales Academiæ Scientiarum Fennicæ, Series A, III. Geologica-Geographica 46. Suomalainen Tiedeakatemia, HelsinkiGoogle Scholar
  40. Kharuk V, Ranson K, Dvinskaya M (2007) Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia. Eurasian J For Res 10:163–171Google Scholar
  41. Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208CrossRefGoogle Scholar
  42. Kullman L (1996) Norway spruce present in the Scandes Mountains, Sweden at 8000 bp: new light on Holocene tree spread. Glob Ecol Biogeogr Lett 5:94–101CrossRefGoogle Scholar
  43. Kullman L (1998) Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Glob Ecol Biogeogr Lett 7:181–188CrossRefGoogle Scholar
  44. Kullman L (2001) Immigration of Picea abies into Nort-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nord J Bot 21:39–54CrossRefGoogle Scholar
  45. Kullman L (2002) Boreal tree taxa in the central Scandes during the Late-Glacial: implications for Late-Quaternary forest history. J Biogeogr 29:1,117–1,124CrossRefGoogle Scholar
  46. Kuneš P, van Odgaard B, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2,150–2,164CrossRefGoogle Scholar
  47. Kuosmanen N, Fang K, Bradshaw HW, Clear JL, Seppä H (2014) Role of forest fires in Holocene stand-scale dynamics in the unmanaged taiga forest of northwestern Russia. Holocene 24:1,503–1,514CrossRefGoogle Scholar
  48. Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Q Sci Rev 25:2,780–2,805CrossRefGoogle Scholar
  49. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  50. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  51. Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15:346–355CrossRefGoogle Scholar
  52. Lutz DA, Shugart HH, Ershov DV, Shuman JK, Isaev AS (2013) Boreal forest sensitivity to increased temperatures at multiple successional stages. Ann For Sci 70:299–308CrossRefGoogle Scholar
  53. Lynch JA, Hollis JL, Hu FS (2004) Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. J Ecol 92:477–489CrossRefGoogle Scholar
  54. McVean DN (1953) Alnus glutinosa (L.) Gaertn. J Ecol 41:447–466CrossRefGoogle Scholar
  55. Miller PA, Giesecke T, Hickler T, Bradshaw RHW, Smith B, Seppä H, Valdes PJ, Sykes MT (2008) Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. J Ecol 96:247–259CrossRefGoogle Scholar
  56. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740CrossRefGoogle Scholar
  57. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  58. Öberg L, Kullman L (2011) Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64:183–196CrossRefGoogle Scholar
  59. Ohlson M, Brown KJ, Birks HJB, Grytnes J-A, Hörnberg G, Niklasson M, Seppä H, Bradshaw RHW (2011) Invasion of Norway spruce diversifies the fire regime in boreal European forests. J Ecol 99:395–403Google Scholar
  60. Peterken GF (1996) Natural woodland—ecology and conservation in northern temperate regions. Cambridge University Press, CambridgeGoogle Scholar
  61. Potapov P, Yaroshenko A, Turubanova S et al (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13:51. URL:
  62. Prentice IC, Harrison SP, Jolly D, Guiot J (1998) The climate and biomes of Europe at 6000 year bp: comparison of model simulations and pollen-based reconstructions. Q Sci Rev 17:659–668CrossRefGoogle Scholar
  63. Rankama T, Vuorela I (1988) Between inland and coast in Metal Age Finland—human impact on the primeval forests of Southern Häme during the Iron Age. Memoranda Societatis Pro Fauna et Flora Fennica 64:25–34Google Scholar
  64. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  65. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 51:1,111–1,150Google Scholar
  66. Reitalu T, Seppä H, Sugita S et al (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. J Biogeogr 40:1,524–1,534CrossRefGoogle Scholar
  67. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414CrossRefGoogle Scholar
  68. Rogers BM, Soja AJ, Goulden ML, Randerson JT (2015) Influence of tree species on continental differencies in boreal fires and climate feedbacks. Nat Geosci. doi: 10.1038/NGEO2352 Google Scholar
  69. Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn 36:13–39CrossRefGoogle Scholar
  70. Scheffer M, Hirota M, Holmgren M, van Nes EH, Chapin FS III (2012) Tresholds for boreal biome transitions. PNAS 109:21,384–21,389CrossRefGoogle Scholar
  71. Segerström U, von Stedingk H (2003) Early-Holocene spruce, Picea abies (L.) Karst., in west central Sweden as revealed by pollen analysis. Holocene 13:897–906CrossRefGoogle Scholar
  72. Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2,842–2,852CrossRefGoogle Scholar
  73. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810CrossRefGoogle Scholar
  74. Selikhovkin AV (2005) Main disturbance factors in north-west Russian forests: structure and databases. Scand J For Res 20:27–32CrossRefGoogle Scholar
  75. Senici D, Lucas A, Chen HYH, Bergeron Y, Larouche A, Brossier B, Blarquez O, Ali AA (2011) Multi-millenial fire frequency and tree abundance differ between xeric and mesic boreal forests in central Canada. J Ecol 101:356–367CrossRefGoogle Scholar
  76. Seppä H, Alenius T, Bradshaw RHW, Giesecke T, Heikkilä M, Muukkonen P (2009a) Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. J Ecol 97:629–640CrossRefGoogle Scholar
  77. Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009b) Last nine-thousand years of temperature variability in Northern Europe. Clim Past 5:523–535CrossRefGoogle Scholar
  78. Shorohova E, Kuuluvainen T, Kangur A, Jõgiste K (2009) Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies. Ann For Sci 66(201):1–20Google Scholar
  79. Shuman JK, Shugart HH, O´Halloran TL (2011) Sensitivity of Siberian larch forests to climate change. Glob Chang Biol 17:2,348–2,370CrossRefGoogle Scholar
  80. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III, Stackhouse PW Jr (2007) Climate-induced boreal forest change: Predictions versus current observations. Glob Planet Change 56:274–296CrossRefGoogle Scholar
  81. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  82. Subetto AD, Wohlfarth B, Davydova NN et al (2002) Climate and environment on the Karelian Isthmus, northwestern Russia, 13000–9000 cal. years bp. Boreas 31:1–19CrossRefGoogle Scholar
  83. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments—theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  84. Sugita S (2006) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241CrossRefGoogle Scholar
  85. Svendsen JI, Alexanderson H, Astakhov VI et al (2004) Late Quaternary ice sheet history of northern Eurasia. Q Sci Rev 23:1,229–1,271CrossRefGoogle Scholar
  86. Syrjänen K, Kalliola R, Puolasmaa A, Mattson J (1994) Landscape structure and forest dynamics in subcontinental Russian European taiga. Ann Zool Fenn 31:19–34Google Scholar
  87. Systra YI (2003) Physico-geographic conditions of biota formation—geologic characteristics. In: Gromtsev AN, Kitaev SP, Kruotv VI et al (eds) Biotic diversity of Karelia: conditions of formation, communities and species. Karelian Research Centre of RAS, Petrozavodsk, pp 7–12Google Scholar
  88. Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290CrossRefGoogle Scholar
  89. Tallantire PA (1972) The regional spread of Spruce (Picea abies (L.) Karst.) within Fennoscandia: a reassessment. Norw J Bot 19:1–16Google Scholar
  90. Tallantire PA (1974) The palaeohistory of the grey alder (Alnus incana (L.) Moench.) and black alder (A. glutinosa (L.) Gaertn.) in Fennoscandia. New Phytol 73:529–546CrossRefGoogle Scholar
  91. Tarasov PE, Webb T III, Andreev AA et al (1998) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1,029–1,053CrossRefGoogle Scholar
  92. Tolonen K (1967) Über die Entwicklung der Moore im finnischen Nordkarelien. Ann Bot Fenn 4:219–416Google Scholar
  93. Tolonen K, Ruuhijärvi R (1976) Standard pollen diagrams from the Salpausselkä region of Southern Finland. Ann Bot Fenn 13:155–196Google Scholar
  94. Vasari Y (1962) A study of the vegetational history of the Kuusamo district (Northeast Finland) during the late-Quaternary period. Annales Botanici Societatis Zoologicæ Botanicæ Fennicæ Vanamo 33:1–138Google Scholar
  95. Wohlfarth B, Filimonova L, Bennike O et al (2002) Late-glacial and early Holocene environmental and cliamtic change at lake Tambichozero, southeastern Russian Karelia. Q Res 58:261–272CrossRefGoogle Scholar
  96. Wohlfarth B, Schwark L, Bennike O et al (2004) Unstable early-Holocene climatic and environmental conditions in northwestern Russia derived from a multidisciplinary study of a lake-sediment sequence from Pichozero, southeastern Russian Karelia. Holocene 14:732–746CrossRefGoogle Scholar
  97. Wohlfarth B, Lacourse T, Bennike O et al (2007) Climatic and environmental changes in north-western Russia between 15,000 and 8,000 cal yr bp: review. Q Sci Rev 26:1,871–1,883CrossRefGoogle Scholar
  98. Yaroshenko AY, Potapov PV, Turubanova SA (2001) The last intact forest landscapes of northern European Russia. Greenpeace Russia, MoscowGoogle Scholar
  99. Yeloff D, Mauquoy D (2006) The influence of vegetation composition on peat humification: implications for palaeoclimatic studies. Boreas 35:662–673CrossRefGoogle Scholar
  100. Zackrisson O (1977) Influence of forest fires on the North Swedish boreal forest. Oikos 1:22–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Niina Kuosmanen
    • 1
    Email author
  • Heikki Seppä
    • 1
  • Triin Reitalu
    • 2
  • Teija Alenius
    • 3
  • Richard H. W. Bradshaw
    • 4
  • Jennifer L. Clear
    • 5
  • Ludmila Filimonova
    • 6
  • Oleg Kuznetsov
    • 6
  • Natalia Zaretskaya
    • 7
  1. 1.Division of Biogeosciences, Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of GeologyTallinn University of TechnologyTallinnEstonia
  3. 3.Department of Philosophy, History, Culture and Art Studies ArchaeologyUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Geography and PlanningUniversity of LiverpoolLiverpoolUK
  5. 5.Department of Forest EcologyCzech University of Life SciencesPragueCzech Republic
  6. 6.Karelian Research Centre of RASInstitute of BiologyPetrozavodskRussia
  7. 7.Geological Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations