Vegetation History and Archaeobotany

, Volume 24, Issue 3, pp 377–391 | Cite as

Landscape change in central Latvia since the Iron Age: multi-proxy analysis of the vegetation impact of conflict, colonization and economic expansion during the last 2,000 years

  • Normunds StivrinsEmail author
  • Alex Brown
  • Triin Reitalu
  • Siim Veski
  • Atko Heinsalu
  • Rowena Yvonne Banerjea
  • Kati Elmi
Original Article


This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.


Lake-dwelling Pollen Non-pollen palynomorphs Late Iron Age Crusades Latvia 



Research was supported by European Social Fund’s Doctoral Studies and International Programme DoRa, project ETF9031 and IUT 1-8. This study runs in cooperation also with the Ecology of Crusading Project (directed by Aleks Pluskowski) funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 263735. Thanks to Maili Roio, Anu Kisand, Jānis Šīre, Aigars Briune, Māris Zunde.

Supplementary material

334_2014_502_MOESM1_ESM.xls (43 kb)
Supplementary material 1 (XLS 43 kb)
334_2014_502_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 kb)
334_2014_502_MOESM3_ESM.doc (37 kb)
Supplementary material 3 (DOC 37 kb)


  1. Apals J (1960) Hidroarheoloģiskie pētījumi 1959.g. Referātu tēzes zinātniskajai sesijai par 1959.g. arheoloģiskajām un etnogrāfiskajām ekspedīcijām. Rīga (in Latvian)Google Scholar
  2. Apals J (1996) Gadskārtējie ziņojumi par Āraišu ezerpils rekonstrukciju no 1981. līdz 1995. gadam. Zinātniskās atskaites sesijas materiāli par arheologu, antropologu un etnogrāfu 1994–1995. gada pētījumu rezultātiem. Rīga (in Latvian)Google Scholar
  3. Apals J (2002) Araisi lake fortress in Latvia. Viking Herit Mag 4:24–25Google Scholar
  4. Apals J (2012) Jānis Apals: Āraišu ezerpils. Rakstu izlase un draugu atmiņas, Latvijas vēstures institūta apgāds, Rīga (in Latvian)Google Scholar
  5. Baker A, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for the past distribution of large herbivores? Quat Sci Rev 62:21–31CrossRefGoogle Scholar
  6. Banerjea RY (2008) Experimental Geochemistry: a multi-elemental characterisation of known activity areas. Antiquity 82:318 Project GalleryCrossRefGoogle Scholar
  7. Battarbee R, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last W (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202CrossRefGoogle Scholar
  8. Bellinger EG, Sigee DC (2010) Freshwater algae: identification and use as bioindicators. Wiley, ChichesterCrossRefGoogle Scholar
  9. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund B (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, New York, pp 455–484Google Scholar
  10. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  11. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  12. Brown A, Pluskowski A (2014) Medieval landscape transformation in the southeast and eastern Baltic: palaeoenvironmental perspectives on the colonisation of frontier landscapes. Archaeol Balt 20:24–46Google Scholar
  13. Bulleid A, Gray HSG (1911) The Glastonbury Lake Village, vol 1. Glastonbury Antiquarian Society, GlastonburyGoogle Scholar
  14. Caune A, Ose I (2004) Latvijas 12. gadsimta beigu–17. gadsimta vācu piļu leksikons. Latvijas vēstures institūta apgāds, Rīga (in Latvian)Google Scholar
  15. Chambers FM, van Geel B, van der Linden M (2011) Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires Peat 7:1–14Google Scholar
  16. Chmura GL, Stone PA, Ross MS (2006) Non-pollen microfossils in Everglades sediments. Rev Palaeobot Palynol 141:103–119CrossRefGoogle Scholar
  17. Coles B, Coles J (1989) people of the wetlands. Thames and Hudson, LondonGoogle Scholar
  18. Cook SR, Banerjea RY, Marshall LJ, Fulford M, Clarke A, van Zweiten C (2010) Concentrations of copper, zinc and lead as indicators of hearth usage at the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK). J Archaeol Sci 37:871–879CrossRefGoogle Scholar
  19. Cook EJ, van Geel B, van der Kaars S, van Arkel J (2011) A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology 35:155–178CrossRefGoogle Scholar
  20. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408CrossRefGoogle Scholar
  21. Cushing EJ (2011) Longevity of reference slides of pollen mounted in silicone oil. Rev Palaeobot Palynol 164:121–131CrossRefGoogle Scholar
  22. Dockrill SJ, Bond JM, Milles A, Simpson IA, Ambers J (1994) Tofts Ness, Sanday, Orkney: an integrated study of a buried Orcadian landscape. In: Luff R, Rowley-Conwy P (eds) whither environmental archaeology? Oxbow Monograph 38, Oxford, pp 115–132Google Scholar
  23. Entwistle JA, Abrahams PW, Dodgshon RA (2000) The geoarchaeological significance and spatial variability of a range of physical and chemical properties from a former habitation site, Isle of Skye. J Archaeol Sci 27:287–303CrossRefGoogle Scholar
  24. Erdtman G (1969) Handbook of palynology: an introduction to the study of pollen grains and spores. Munksgaard, CopenhagenGoogle Scholar
  25. Etienne D, Jouffroy-Bapicot I (2014) Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Veget Hist Archaeobot 23:743–749CrossRefGoogle Scholar
  26. Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, New YorkGoogle Scholar
  27. Fernández FG, Terry RE, Inomata T, Eberl M (2002) An ethnoarchaeological study of chemical residues in the floors and soils of Q’eqchi’ Maya houses at Las Pozas, Guatemala. Geoarchaeology 17:487–519CrossRefGoogle Scholar
  28. Forste K (2012) Understanding adaptions during the Bronze Age: northern Alpine lake dwellings. Univ Cincinnati Grad Stud J Anthropol 4:1–7Google Scholar
  29. Gałka M, Tobolski K, Zawisza E, Goslar T (2014) Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veget Hist Archaeobot 23:123–152CrossRefGoogle Scholar
  30. Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H (2010) Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veget Hist Archaeobot 19:427–438CrossRefGoogle Scholar
  31. Giachi G, Mori Secci M, Pignatelli O, Gambogi P, Mariotti Lippi M (2010) The prehistoric pile-dwelling settlement of Stagno (Leghorn, Italy) wood and food resource exploitation. J Archaeol Sci 37(1):1,260–1,268CrossRefGoogle Scholar
  32. Göransson H (2002) Alvastra pile dwelling–a 5000 year-old byre? In: Karin V (ed) Nordic archaeobotany-NAG 2000 in Umeå. Miljöarkeologiska laboratoriet, Institutionen för arkeologi och samiska studier, Umeå, pp 67–84Google Scholar
  33. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn 37:1,217–1,245CrossRefGoogle Scholar
  34. Graudonis J (2001) Early Metal Period. In: Graudonis J (ed) The prehistory of Latvia. Institute of the history of Latvia, RigaGoogle Scholar
  35. Grimm EC (2011) Grimm EC (2011) TILIA 1.7.16 Software. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  36. Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen CT (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev 22:353–370CrossRefGoogle Scholar
  37. Heinsalu A, Alliksaar T (2009) Palaeolimnological assessment of environmental change over the last two centuries in oligotrophic Lake Nohipalu Valgjärv, southern Estonia. Est J Earth Sci 58:124–132CrossRefGoogle Scholar
  38. Hillbrand M, Hadorn P, Cugny C, Hasenfratz A, Galop D, Haas JN (2012) The palaeoecological value of Diporotheca rhizophila ascospores (Diporothecaceae, Ascomycota) found in Holocene sediments from Lake Nussbaumersee, Switzerland. Rev Palaeobot Palynol 186:62–68CrossRefGoogle Scholar
  39. Holliday VT, Gartner WG (2007) Methods of P analysis in archaeology. J Archaeol Sci 34:301–333CrossRefGoogle Scholar
  40. Hutson SR, Terry RE (2006) Recovering social and cultural dynamics from plaster floors: chemical analyses at ancient Chunchucmil, Yucatan, Mexico. J Archaeol Sci 33:391–404CrossRefGoogle Scholar
  41. Ilves K (2010) Searching for sunken legends in dark waters: Estonian lakes in archaeology. Skyllis 10:149–153Google Scholar
  42. Jacomet S (2009) Plant economy and village life in Neolithic lake dwellings at the time of the Alpine Iceman. Veget Hist Archaeobot 18:47–59CrossRefGoogle Scholar
  43. Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82CrossRefGoogle Scholar
  44. Jeraj M, Velušček A, Jacomet S (2009) The diet of Eneolithic (Copper Age, Fourth millennium cal b.c.) pile dwellers and the early formation of the cultural landscape south of the Alps: a case study from Slovenia. Veget Hist Archaeobot 18:75–89CrossRefGoogle Scholar
  45. Kemp ALW, Williams DH, Thomas RL, Gregory ML (1978) Impact of man’s activities on the chemical composition of the sediments of Lake Superior and Huron. Water, air and soil pollut 10:381–402CrossRefGoogle Scholar
  46. Koff T, Punning JM (2002) The last hundred years of land-use history in Estonia as inferred from pollen records. Ann Bot Fenn 39:213–224Google Scholar
  47. Kołaczek P, Zubek S, Błaszkowski J, Mleczko P, Margielewski W (2013) Erosion or plant succession–How to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37CrossRefGoogle Scholar
  48. Komárek J, Jankovská V (2001) Review of green algal genus Pediastrum; implication for pollen-analytical research. Bibl Phycol, BerlinGoogle Scholar
  49. Korhola A, Rautio M (2001) Cladocera and other branchiopod crustaceans. In: Smol JP, WM HJB, Last JP (eds) Tracking environmental change using lake sediments. 4, Zoological Indicators. Kluwer, Dordrecht, pp 5–41CrossRefGoogle Scholar
  50. Korhola A, Weckström J (2000) A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quat Res 54:284–294CrossRefGoogle Scholar
  51. Krammer KH, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Stuttgart, StuttgartGoogle Scholar
  52. Kriiska A, Roio M (2011) Prehistoric archaeology of wetlands in Estonia. In: Pranckėnaitė E (ed) Wetland settlements of the Baltic: a prehistoric perspective. Center of underwater archaeology, Vilnius, pp 55–73Google Scholar
  53. Kuijpers A, Kunzendorf H, Rasmussen P, Sicre MA, Ezat U, Fernane A, Weckström K (2012) The Baltic Sea inflow regime at the termination of the Medieval Climate Anomaly linked to North Atlantic circulation. Baltica 25:57–64CrossRefGoogle Scholar
  54. Lamentowicz M, Milecka K, Gałka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz Ł, van der Knaap WO (2008) Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38:214–229CrossRefGoogle Scholar
  55. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  56. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  57. Leuzinger U, Rast-Eicher A (2011) Flax processing in the Neolithic and Bronze Age pile-dwelling settlements of eastern Switzerland. Veget Hist Archaeobot 20:535–542CrossRefGoogle Scholar
  58. Lomas-Clarke SH, Barber KE (2007) Human impact signals from peat bogs–a combined palynological and geochemical approach. Veget Hist Archaeobot 16:419–429CrossRefGoogle Scholar
  59. Macdonald GM (2001) Conifer stomata. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. 3, terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 33–47Google Scholar
  60. Magny M, Arnaud F, Billaud Y, Marguet A (2012) Lake-level fluctuations at Lake Bourget (eastern France) around 4500–3500 cal. a bp and their palaeoclimatic and archaeological implications. J Quat Sci 27:441–544CrossRefGoogle Scholar
  61. Makohonienko M (2004) Application of phyto- and zooplankton analyses in environmental archaeology. In: Yoshinori Y (ed) Kankyokokogaku handobukku. Asakura Shoten, Tokyo, pp 295–321Google Scholar
  62. Marrotte RR, Chmura GL, Stone PA (2012) The utility of Nymphaeaceae sclereids in paleoenvironmental research. Rev Palaeobot Palynol 169:29–37CrossRefGoogle Scholar
  63. Meadows J, Zunde M (2014) A lake fortress, a floating chronology, and an atmospheric anomaly: the surprising results of a radiocarbon wiggle-match from Āraiši, Latvia. Geochronometria 41:223–233CrossRefGoogle Scholar
  64. Meltsov V, Poska A, Odgaard BV, Sammul M, Kull T (2011) Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev Palaeobot Palynol 166:344–351CrossRefGoogle Scholar
  65. Menotti F (2003) Cultural response to environmental change in the Alpine lacustrine regions. Oxf J Archaeol 22:375–396CrossRefGoogle Scholar
  66. Menotti F (2004) Living on the lake in prehistoric Europe. Routledge, LondonGoogle Scholar
  67. Menotti F, Baubonis Z, Brazaitis D, Higham T, Kvedaravicius M, Lewis H, Motuzaite G, Pranckenaite E (2005) The first lake-dwellers of Lithuania: Late Bronze. Oxf J Archaeol 24:381–403CrossRefGoogle Scholar
  68. Middleton WD, Price TD (1996) Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. J Archaeol Sci 23:673–687CrossRefGoogle Scholar
  69. Mikljaev AM, Doluhanov PM, Guman MA (1984) Usvjati IV, Naumovo-ozernie poselenija epoh neolita I bronzi v verhovjah Zapadnoi Dvini.–Arheologija I paleografija mezolita I neolita Russkoi ravnini. Moskva, pp 67–81 (in Russian)Google Scholar
  70. Motuzaitė-Matuzevičiūtė G (2008) Living above the water or on dry land? The application of soil analysis methods to investigate a submerged Bronze Age to early Iron Age lake dwelling site in eastern Lithuania. Archaeol Balt 9:33–46Google Scholar
  71. Mugurēvičs E (2008) Viduslaiku Ciems un Pils Salispils Novadā. Latvijas Vēstures Institūta Apgāds, Rīga (in Latvian)Google Scholar
  72. Nowaczyk NR (2001) Logging of magnetic susceptibility. In: Smol JP, Last WM (eds) Tracking environmental change using lake sediments. 1: Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 155–170Google Scholar
  73. O’Connell M, Ghilardi B, Morrison L (2013) A 7000-year record of environmental change, including early farming impact, based on lake-sediment geochemistry and pollen data from County Sligo, western Ireland. Quat Res 81:35–49CrossRefGoogle Scholar
  74. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-7.
  75. Pierce C, Adams KR, Stewart JD (1998) Determining the fuel constituents of ancient hearth ash via ICP-AES analysis. J Archaeol Sci 25:493–503CrossRefGoogle Scholar
  76. Pluskowski A (2012) The archaeology of the Prussian Crusades: holy war and colonization. Routledge, LondonGoogle Scholar
  77. Pluskowski A, Brown A (2012) From forest to field: the changing environment of medieval Prussia. In: Pluskowski A (ed) The archaeology of the Prussian Crusades: holy war and colonization. Routledge, London, pp 294–336Google Scholar
  78. Pollmann B (2014) Environment and agriculture of the transitional period from the Late Bronze to early Iron Age in the eastern Baltic: an archaeobotanical case study of the lakeshore settlement Luokesa 1, Lithuania. Veget Hist Archaeobot 23:403–418CrossRefGoogle Scholar
  79. Pranckėnaitė E (2014) Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: the archaeological context of the Luokesa lake settlements. Veget Hist Archaeobot 23:341–354CrossRefGoogle Scholar
  80. Punning JM, Liiva A, Ilves E (1968) Tartu radiocarbon dates III. Radiocarbon 10:379–383Google Scholar
  81. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL
  82. Reimer PJ, Bard E, Bayliss A (2013) Intcal13 and marine13 radiocarbon age calibration curves 0–50000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  83. Reitalu T, Seppä H, Sugita S et al (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. J Biogeogr 40:1,524–1,534CrossRefGoogle Scholar
  84. Renberg I, Brännvall ML, Bindler R, Emteryd O (2002) Stable lead isotopes and lake sediments- a useful combination for the study of atmospheric lead pollution. Sci Total Environ 292:45–54CrossRefGoogle Scholar
  85. Rose NL (1990) A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4:61–68CrossRefGoogle Scholar
  86. Saarse L, Niinemets E, Poska A, Veski S (2010) Is there a relationship between crop farming and the Alnus decline in the eastern Baltic region? Veget Hist Archaeobot 19:17–28CrossRefGoogle Scholar
  87. Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim of the Past 5:523–535CrossRefGoogle Scholar
  88. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  89. Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290CrossRefGoogle Scholar
  90. Terasmaa J, Puusepp L, Marzecová A, Vandel E, Vaasma T, Koff T (2013) Natural and human-induced environmental changes in Eastern Europe during the Holocene: a multi-proxy Palaeolimnological study of small Latvian lake in a humid temperate zone. J Paleolimnol 49:663–678CrossRefGoogle Scholar
  91. Terry RE, Fernández FG, Parnell JJ, Inomata T (2004) The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. J Archaeol Sci 31:1,237–1,250CrossRefGoogle Scholar
  92. Tolar T, Jacomet S, Velušček A, Čufar K (2011) Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veget Hist Archaeobot 20:207–222CrossRefGoogle Scholar
  93. Urban W (2003) The Teutonic Knights, a military history. Greenhill Books, LondonGoogle Scholar
  94. Väliranta M, Blundell A, Charman DJ, Karofeld E, Korhola A, Sillasoo Ü, Tuittila ES (2012) Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison. Quat Int 268:34–43CrossRefGoogle Scholar
  95. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. 3, Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 99–120Google Scholar
  96. Van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329CrossRefGoogle Scholar
  97. Van Geel B, Mur LR, Ralska-Jasiewiczowa M, Goslar T (1994) Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev Palaeobot Palynol 83:97–105CrossRefGoogle Scholar
  98. Veski S, Koppel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia. J Biogeogr 32:1,473–1,488CrossRefGoogle Scholar
  99. Von Sievers CG (1876) Pfahlbau im Arrasch-See (Lievland). Verhandlungen der Berliner Gesellschaft für Anthropol, Ethnol Urgesch, pp 276–279Google Scholar
  100. Walker IR (2001) Midges: chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments 4 Zoological indicators. Kluwer, Dordrecht, pp 43–66CrossRefGoogle Scholar
  101. Wilson CA, Davidson DA, Cresser MS (2005) An evaluation of multi-element analysis of historic soil contamination to differentiate space use and former function in and around abandoned farms. Holocene 15:1,094–1,099CrossRefGoogle Scholar
  102. Wilson CA, Davidson DA, Cresser MS (2008) Multi-element soil analysis: an assessment of its potential as an aid to archaeological interpretation. J Archaeol Sci 35:412–424CrossRefGoogle Scholar
  103. Wood JR, Wilmshurst JM (2013) Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events. Quat Sci Rev 77:1–3CrossRefGoogle Scholar
  104. Zelčs V, Markots A (2004) Deglaciation history of Latvia. In: Ehlers J, Gibbard PL, Last WM (eds) Quaternary glaciations-extent and chronology of glaciations. Part I: Europe. Developments in Quaternary Science 2, Zoological indicators. Elsevier, Rotterdam, pp 225–244Google Scholar
  105. Zelčs V, Markots A, Nartišs M, Saks T (2011) Pleistocene glaciations in Latvia. In: Ehlers J, Gibbard PL, Huges PD (eds) Quaternary glaciations-extent and chronology, a closer look. Elsevier, Amsterdam, pp 221–229Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Normunds Stivrins
    • 1
    Email author
  • Alex Brown
    • 2
  • Triin Reitalu
    • 1
  • Siim Veski
    • 1
  • Atko Heinsalu
    • 1
  • Rowena Yvonne Banerjea
    • 2
  • Kati Elmi
    • 1
  1. 1.Institute of Geology at Tallinn University of TechnologyTallinnEstonia
  2. 2.Department of Archaeology, School of Archaeology, Geography and Environmental SciencesUniversity of ReadingReadingUK

Personalised recommendations