Skip to main content

Advertisement

Log in

Landscape change in central Latvia since the Iron Age: multi-proxy analysis of the vegetation impact of conflict, colonization and economic expansion during the last 2,000 years

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apals J (1960) Hidroarheoloģiskie pētījumi 1959.g. Referātu tēzes zinātniskajai sesijai par 1959.g. arheoloģiskajām un etnogrāfiskajām ekspedīcijām. Rīga (in Latvian)

  • Apals J (1996) Gadskārtējie ziņojumi par Āraišu ezerpils rekonstrukciju no 1981. līdz 1995. gadam. Zinātniskās atskaites sesijas materiāli par arheologu, antropologu un etnogrāfu 1994–1995. gada pētījumu rezultātiem. Rīga (in Latvian)

  • Apals J (2002) Araisi lake fortress in Latvia. Viking Herit Mag 4:24–25

    Google Scholar 

  • Apals J (2012) Jānis Apals: Āraišu ezerpils. Rakstu izlase un draugu atmiņas, Latvijas vēstures institūta apgāds, Rīga (in Latvian)

    Google Scholar 

  • Baker A, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for the past distribution of large herbivores? Quat Sci Rev 62:21–31

    Article  Google Scholar 

  • Banerjea RY (2008) Experimental Geochemistry: a multi-elemental characterisation of known activity areas. Antiquity 82:318 Project Gallery

    Article  Google Scholar 

  • Battarbee R, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last W (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Bellinger EG, Sigee DC (2010) Freshwater algae: identification and use as bioindicators. Wiley, Chichester

    Book  Google Scholar 

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund B (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, New York, pp 455–484

    Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Brown A, Pluskowski A (2014) Medieval landscape transformation in the southeast and eastern Baltic: palaeoenvironmental perspectives on the colonisation of frontier landscapes. Archaeol Balt 20:24–46

    Google Scholar 

  • Bulleid A, Gray HSG (1911) The Glastonbury Lake Village, vol 1. Glastonbury Antiquarian Society, Glastonbury

    Google Scholar 

  • Caune A, Ose I (2004) Latvijas 12. gadsimta beigu–17. gadsimta vācu piļu leksikons. Latvijas vēstures institūta apgāds, Rīga (in Latvian)

  • Chambers FM, van Geel B, van der Linden M (2011) Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires Peat 7:1–14

    Google Scholar 

  • Chmura GL, Stone PA, Ross MS (2006) Non-pollen microfossils in Everglades sediments. Rev Palaeobot Palynol 141:103–119

    Article  Google Scholar 

  • Coles B, Coles J (1989) people of the wetlands. Thames and Hudson, London

    Google Scholar 

  • Cook SR, Banerjea RY, Marshall LJ, Fulford M, Clarke A, van Zweiten C (2010) Concentrations of copper, zinc and lead as indicators of hearth usage at the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK). J Archaeol Sci 37:871–879

    Article  Google Scholar 

  • Cook EJ, van Geel B, van der Kaars S, van Arkel J (2011) A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology 35:155–178

    Article  Google Scholar 

  • Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408

    Article  Google Scholar 

  • Cushing EJ (2011) Longevity of reference slides of pollen mounted in silicone oil. Rev Palaeobot Palynol 164:121–131

    Article  Google Scholar 

  • Dockrill SJ, Bond JM, Milles A, Simpson IA, Ambers J (1994) Tofts Ness, Sanday, Orkney: an integrated study of a buried Orcadian landscape. In: Luff R, Rowley-Conwy P (eds) whither environmental archaeology? Oxbow Monograph 38, Oxford, pp 115–132

  • Entwistle JA, Abrahams PW, Dodgshon RA (2000) The geoarchaeological significance and spatial variability of a range of physical and chemical properties from a former habitation site, Isle of Skye. J Archaeol Sci 27:287–303

    Article  Google Scholar 

  • Erdtman G (1969) Handbook of palynology: an introduction to the study of pollen grains and spores. Munksgaard, Copenhagen

    Google Scholar 

  • Etienne D, Jouffroy-Bapicot I (2014) Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Veget Hist Archaeobot 23:743–749

    Article  Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, New York

    Google Scholar 

  • Fernández FG, Terry RE, Inomata T, Eberl M (2002) An ethnoarchaeological study of chemical residues in the floors and soils of Q’eqchi’ Maya houses at Las Pozas, Guatemala. Geoarchaeology 17:487–519

    Article  Google Scholar 

  • Forste K (2012) Understanding adaptions during the Bronze Age: northern Alpine lake dwellings. Univ Cincinnati Grad Stud J Anthropol 4:1–7

    Google Scholar 

  • Gałka M, Tobolski K, Zawisza E, Goslar T (2014) Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veget Hist Archaeobot 23:123–152

    Article  Google Scholar 

  • Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H (2010) Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veget Hist Archaeobot 19:427–438

    Article  Google Scholar 

  • Giachi G, Mori Secci M, Pignatelli O, Gambogi P, Mariotti Lippi M (2010) The prehistoric pile-dwelling settlement of Stagno (Leghorn, Italy) wood and food resource exploitation. J Archaeol Sci 37(1):1,260–1,268

    Article  Google Scholar 

  • Göransson H (2002) Alvastra pile dwelling–a 5000 year-old byre? In: Karin V (ed) Nordic archaeobotany-NAG 2000 in Umeå. Miljöarkeologiska laboratoriet, Institutionen för arkeologi och samiska studier, Umeå, pp 67–84

    Google Scholar 

  • Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn 37:1,217–1,245

    Article  Google Scholar 

  • Graudonis J (2001) Early Metal Period. In: Graudonis J (ed) The prehistory of Latvia. Institute of the history of Latvia, Riga

    Google Scholar 

  • Grimm EC (2011) Grimm EC (2011) TILIA 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield

    Google Scholar 

  • Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen CT (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev 22:353–370

    Article  Google Scholar 

  • Heinsalu A, Alliksaar T (2009) Palaeolimnological assessment of environmental change over the last two centuries in oligotrophic Lake Nohipalu Valgjärv, southern Estonia. Est J Earth Sci 58:124–132

    Article  Google Scholar 

  • Hillbrand M, Hadorn P, Cugny C, Hasenfratz A, Galop D, Haas JN (2012) The palaeoecological value of Diporotheca rhizophila ascospores (Diporothecaceae, Ascomycota) found in Holocene sediments from Lake Nussbaumersee, Switzerland. Rev Palaeobot Palynol 186:62–68

    Article  Google Scholar 

  • Holliday VT, Gartner WG (2007) Methods of P analysis in archaeology. J Archaeol Sci 34:301–333

    Article  Google Scholar 

  • Hutson SR, Terry RE (2006) Recovering social and cultural dynamics from plaster floors: chemical analyses at ancient Chunchucmil, Yucatan, Mexico. J Archaeol Sci 33:391–404

    Article  Google Scholar 

  • Ilves K (2010) Searching for sunken legends in dark waters: Estonian lakes in archaeology. Skyllis 10:149–153

    Google Scholar 

  • Jacomet S (2009) Plant economy and village life in Neolithic lake dwellings at the time of the Alpine Iceman. Veget Hist Archaeobot 18:47–59

    Article  Google Scholar 

  • Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82

    Article  Google Scholar 

  • Jeraj M, Velušček A, Jacomet S (2009) The diet of Eneolithic (Copper Age, Fourth millennium cal b.c.) pile dwellers and the early formation of the cultural landscape south of the Alps: a case study from Slovenia. Veget Hist Archaeobot 18:75–89

    Article  Google Scholar 

  • Kemp ALW, Williams DH, Thomas RL, Gregory ML (1978) Impact of man’s activities on the chemical composition of the sediments of Lake Superior and Huron. Water, air and soil pollut 10:381–402

    Article  Google Scholar 

  • Koff T, Punning JM (2002) The last hundred years of land-use history in Estonia as inferred from pollen records. Ann Bot Fenn 39:213–224

    Google Scholar 

  • Kołaczek P, Zubek S, Błaszkowski J, Mleczko P, Margielewski W (2013) Erosion or plant succession–How to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37

    Article  Google Scholar 

  • Komárek J, Jankovská V (2001) Review of green algal genus Pediastrum; implication for pollen-analytical research. Bibl Phycol, Berlin

    Google Scholar 

  • Korhola A, Rautio M (2001) Cladocera and other branchiopod crustaceans. In: Smol JP, WM HJB, Last JP (eds) Tracking environmental change using lake sediments. 4, Zoological Indicators. Kluwer, Dordrecht, pp 5–41

    Chapter  Google Scholar 

  • Korhola A, Weckström J (2000) A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quat Res 54:284–294

    Article  Google Scholar 

  • Krammer KH, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Stuttgart, Stuttgart

  • Kriiska A, Roio M (2011) Prehistoric archaeology of wetlands in Estonia. In: Pranckėnaitė E (ed) Wetland settlements of the Baltic: a prehistoric perspective. Center of underwater archaeology, Vilnius, pp 55–73

    Google Scholar 

  • Kuijpers A, Kunzendorf H, Rasmussen P, Sicre MA, Ezat U, Fernane A, Weckström K (2012) The Baltic Sea inflow regime at the termination of the Medieval Climate Anomaly linked to North Atlantic circulation. Baltica 25:57–64

    Article  Google Scholar 

  • Lamentowicz M, Milecka K, Gałka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz Ł, van der Knaap WO (2008) Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38:214–229

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Leuzinger U, Rast-Eicher A (2011) Flax processing in the Neolithic and Bronze Age pile-dwelling settlements of eastern Switzerland. Veget Hist Archaeobot 20:535–542

    Article  Google Scholar 

  • Lomas-Clarke SH, Barber KE (2007) Human impact signals from peat bogs–a combined palynological and geochemical approach. Veget Hist Archaeobot 16:419–429

    Article  Google Scholar 

  • Macdonald GM (2001) Conifer stomata. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. 3, terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 33–47

    Google Scholar 

  • Magny M, Arnaud F, Billaud Y, Marguet A (2012) Lake-level fluctuations at Lake Bourget (eastern France) around 4500–3500 cal. a bp and their palaeoclimatic and archaeological implications. J Quat Sci 27:441–544

    Article  Google Scholar 

  • Makohonienko M (2004) Application of phyto- and zooplankton analyses in environmental archaeology. In: Yoshinori Y (ed) Kankyokokogaku handobukku. Asakura Shoten, Tokyo, pp 295–321

    Google Scholar 

  • Marrotte RR, Chmura GL, Stone PA (2012) The utility of Nymphaeaceae sclereids in paleoenvironmental research. Rev Palaeobot Palynol 169:29–37

    Article  Google Scholar 

  • Meadows J, Zunde M (2014) A lake fortress, a floating chronology, and an atmospheric anomaly: the surprising results of a radiocarbon wiggle-match from Āraiši, Latvia. Geochronometria 41:223–233

    Article  Google Scholar 

  • Meltsov V, Poska A, Odgaard BV, Sammul M, Kull T (2011) Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev Palaeobot Palynol 166:344–351

    Article  Google Scholar 

  • Menotti F (2003) Cultural response to environmental change in the Alpine lacustrine regions. Oxf J Archaeol 22:375–396

    Article  Google Scholar 

  • Menotti F (2004) Living on the lake in prehistoric Europe. Routledge, London

    Google Scholar 

  • Menotti F, Baubonis Z, Brazaitis D, Higham T, Kvedaravicius M, Lewis H, Motuzaite G, Pranckenaite E (2005) The first lake-dwellers of Lithuania: Late Bronze. Oxf J Archaeol 24:381–403

    Article  Google Scholar 

  • Middleton WD, Price TD (1996) Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. J Archaeol Sci 23:673–687

    Article  Google Scholar 

  • Mikljaev AM, Doluhanov PM, Guman MA (1984) Usvjati IV, Naumovo-ozernie poselenija epoh neolita I bronzi v verhovjah Zapadnoi Dvini.–Arheologija I paleografija mezolita I neolita Russkoi ravnini. Moskva, pp 67–81 (in Russian)

  • Motuzaitė-Matuzevičiūtė G (2008) Living above the water or on dry land? The application of soil analysis methods to investigate a submerged Bronze Age to early Iron Age lake dwelling site in eastern Lithuania. Archaeol Balt 9:33–46

    Google Scholar 

  • Mugurēvičs E (2008) Viduslaiku Ciems un Pils Salispils Novadā. Latvijas Vēstures Institūta Apgāds, Rīga (in Latvian)

    Google Scholar 

  • Nowaczyk NR (2001) Logging of magnetic susceptibility. In: Smol JP, Last WM (eds) Tracking environmental change using lake sediments. 1: Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 155–170

    Google Scholar 

  • O’Connell M, Ghilardi B, Morrison L (2013) A 7000-year record of environmental change, including early farming impact, based on lake-sediment geochemistry and pollen data from County Sligo, western Ireland. Quat Res 81:35–49

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan

  • Pierce C, Adams KR, Stewart JD (1998) Determining the fuel constituents of ancient hearth ash via ICP-AES analysis. J Archaeol Sci 25:493–503

    Article  Google Scholar 

  • Pluskowski A (2012) The archaeology of the Prussian Crusades: holy war and colonization. Routledge, London

    Google Scholar 

  • Pluskowski A, Brown A (2012) From forest to field: the changing environment of medieval Prussia. In: Pluskowski A (ed) The archaeology of the Prussian Crusades: holy war and colonization. Routledge, London, pp 294–336

    Google Scholar 

  • Pollmann B (2014) Environment and agriculture of the transitional period from the Late Bronze to early Iron Age in the eastern Baltic: an archaeobotanical case study of the lakeshore settlement Luokesa 1, Lithuania. Veget Hist Archaeobot 23:403–418

    Article  Google Scholar 

  • Pranckėnaitė E (2014) Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: the archaeological context of the Luokesa lake settlements. Veget Hist Archaeobot 23:341–354

    Article  Google Scholar 

  • Punning JM, Liiva A, Ilves E (1968) Tartu radiocarbon dates III. Radiocarbon 10:379–383

    Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/

  • Reimer PJ, Bard E, Bayliss A (2013) Intcal13 and marine13 radiocarbon age calibration curves 0–50000 years cal bp. Radiocarbon 55:1,869–1,887

    Article  Google Scholar 

  • Reitalu T, Seppä H, Sugita S et al (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. J Biogeogr 40:1,524–1,534

    Article  Google Scholar 

  • Renberg I, Brännvall ML, Bindler R, Emteryd O (2002) Stable lead isotopes and lake sediments- a useful combination for the study of atmospheric lead pollution. Sci Total Environ 292:45–54

    Article  Google Scholar 

  • Rose NL (1990) A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4:61–68

    Article  Google Scholar 

  • Saarse L, Niinemets E, Poska A, Veski S (2010) Is there a relationship between crop farming and the Alnus decline in the eastern Baltic region? Veget Hist Archaeobot 19:17–28

    Article  Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim of the Past 5:523–535

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290

    Article  Google Scholar 

  • Terasmaa J, Puusepp L, Marzecová A, Vandel E, Vaasma T, Koff T (2013) Natural and human-induced environmental changes in Eastern Europe during the Holocene: a multi-proxy Palaeolimnological study of small Latvian lake in a humid temperate zone. J Paleolimnol 49:663–678

    Article  Google Scholar 

  • Terry RE, Fernández FG, Parnell JJ, Inomata T (2004) The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. J Archaeol Sci 31:1,237–1,250

    Article  Google Scholar 

  • Tolar T, Jacomet S, Velušček A, Čufar K (2011) Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veget Hist Archaeobot 20:207–222

    Article  Google Scholar 

  • Urban W (2003) The Teutonic Knights, a military history. Greenhill Books, London

    Google Scholar 

  • Väliranta M, Blundell A, Charman DJ, Karofeld E, Korhola A, Sillasoo Ü, Tuittila ES (2012) Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison. Quat Int 268:34–43

    Article  Google Scholar 

  • Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. 3, Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 99–120

    Google Scholar 

  • Van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329

    Article  Google Scholar 

  • Van Geel B, Mur LR, Ralska-Jasiewiczowa M, Goslar T (1994) Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev Palaeobot Palynol 83:97–105

    Article  Google Scholar 

  • Veski S, Koppel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia. J Biogeogr 32:1,473–1,488

    Article  Google Scholar 

  • Von Sievers CG (1876) Pfahlbau im Arrasch-See (Lievland). Verhandlungen der Berliner Gesellschaft für Anthropol, Ethnol Urgesch, pp 276–279

  • Walker IR (2001) Midges: chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments 4 Zoological indicators. Kluwer, Dordrecht, pp 43–66

    Chapter  Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2005) An evaluation of multi-element analysis of historic soil contamination to differentiate space use and former function in and around abandoned farms. Holocene 15:1,094–1,099

    Article  Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2008) Multi-element soil analysis: an assessment of its potential as an aid to archaeological interpretation. J Archaeol Sci 35:412–424

    Article  Google Scholar 

  • Wood JR, Wilmshurst JM (2013) Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events. Quat Sci Rev 77:1–3

    Article  Google Scholar 

  • Zelčs V, Markots A (2004) Deglaciation history of Latvia. In: Ehlers J, Gibbard PL, Last WM (eds) Quaternary glaciations-extent and chronology of glaciations. Part I: Europe. Developments in Quaternary Science 2, Zoological indicators. Elsevier, Rotterdam, pp 225–244

    Google Scholar 

  • Zelčs V, Markots A, Nartišs M, Saks T (2011) Pleistocene glaciations in Latvia. In: Ehlers J, Gibbard PL, Huges PD (eds) Quaternary glaciations-extent and chronology, a closer look. Elsevier, Amsterdam, pp 221–229

    Google Scholar 

Download references

Acknowledgments

Research was supported by European Social Fund’s Doctoral Studies and International Programme DoRa, project ETF9031 and IUT 1-8. This study runs in cooperation also with the Ecology of Crusading Project (directed by Aleks Pluskowski) funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 263735. Thanks to Maili Roio, Anu Kisand, Jānis Šīre, Aigars Briune, Māris Zunde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normunds Stivrins.

Additional information

Communicated by M.-J. Gaillard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stivrins, N., Brown, A., Reitalu, T. et al. Landscape change in central Latvia since the Iron Age: multi-proxy analysis of the vegetation impact of conflict, colonization and economic expansion during the last 2,000 years. Veget Hist Archaeobot 24, 377–391 (2015). https://doi.org/10.1007/s00334-014-0502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-014-0502-y

Keywords

Navigation