Vegetation History and Archaeobotany

, Volume 24, Issue 3, pp 393–412 | Cite as

Palynological and sedimentological evidence from the Trans-Ural steppe (Russia) and its palaeoecological implications for the sudden emergence of Bronze Age sedentarism

  • Astrid StobbeEmail author
  • Maren Gumnior
  • Astrid Röpke
  • Heike Schneider
Original Article


At the turn of the second to the third millennium bc, fortified and systematically organized settlements along with a developed metallurgy emerged in the Trans-Ural steppe. In order to reconstruct the related vegetation and climatic changes in the area and to detect effects of human impact during the respective Bronze-Age Sintashta-Petrovka and Srubnaya-Alakul cultures (2100–1650 cal bc), palynological and sedimentological investigations accompanying archaeological excavations were carried out. Statistical analyses of pollen spectra from two sediment cores in the immediate vicinity of the settlement Kamennyi Ambar demonstrate substantial similarities in Bronze Age and present vegetation covers. Higher percentages of arboreal pollen, especially in respect of deciduous trees, and consistently high values of Artemisia within the regional spectra suggest that Bronze Age cultures developed in a relatively humid environment. Simultaneously, higher values of Chenopodiaceae, Plantago and Cichorioideae point to steppe degradation at local scales, whereas regional vegetation appears to have been relatively unaffected by human activities. Although more than 30 localities in the micro-region of Karagaily Ayat were analyzed, none of these sediment cores accounts for a continuous sedimentation during the last 9,000 years. Our results reveal that climatic fluctuations are not always directly reflected by sediment formation, with many non-climatic factors, such as post-sedimentary processes, local morphology and erosion believed to be crucial. Only the use of high resolution AMS radiocarbon dating is suitable to detect hiatuses, hence providing a valuable clue to the interpretation of palaeoenvironmental conditions.


Pollen analysis Sedimentology Sintashta settlements Climate Human impact 



We would like to thank the DFG for the financial support (STO 720/2-3, KA 752/17-2), A. J. Kalis for initiation of the project, A. König and C. Buttler for the collection of the modern plant material, T. Zerl for the fruitful discussion and comments on statistics and Th. Kasper for the assistance in measurements of magnetic susceptibility (Institute of Geography, Friedrich-Schiller University, Jena). The unknown reviewers are thanked for their thorough review of this paper.


  1. Abdullin M, Yunusbaev U (2005) Accelerated rehabilitation of degraded steppe pastures in the Trans-Ural region by hay transfer. In: Struchkov A, Kuleshova J (eds) Selected papers from the international field seminar at the Galichya Gora Nature Reserve (Russia), Biodiversity Conservation Center, Moscow, pp 147–154Google Scholar
  2. Anthony DW (2009) The Sintastha genesis: the role of climate change, warfare and long-distance trade. In: Hanks BK, Linduff KM (eds) Social complexity in prehistoric Eurasia: monuments, metal and mobility. Cambridge University Press, Cambridge, pp 47–73CrossRefGoogle Scholar
  3. Bartington Instruments® (2009) The MS2 magnetic susceptibility system. Bartington, Witney, UKGoogle Scholar
  4. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Blyakharchuk TA (2003) Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland. Holocene 13:715–731. doi: 10.1191/0959683603hl658rp CrossRefGoogle Scholar
  6. Boroffka N (2013) Klimatische Schwankungen und Siedlungsgeschehen in der frühen Geschichte Kasachstans. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens 1. Katalog Deutsches Bergbaumuseum, Bochum, pp 55–66 Google Scholar
  7. Boroffka N, Mantu-Lazarovici C (2011) Zwei Bronzesicheln der Noua-Kultur aus Poieneşti: zur Wirtschaft in den bronzezeitlichen Steppen Eurasiens. In: Sava E, Govedarica B, Hänsel B (eds) Der Schwarzmeerraum vom Äneolithikum bis in die Früheisenzeit (5,000–500 v. Chr.) 2. Globale Entwicklung versus Lokalgeschehen. Prähistorische Archäologie in Südosteuropa 27. VML Verlag, Rahden/Westf. pp 148–165 Google Scholar
  8. Bronk Ramsey C (2010) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  9. Chernyanskiy SS (1998) History of soil evolution in the Transurals in the second half of the Holocene (Diss.), Moscow [Иcтopия paзвития пoчв чepнoзeмнoгo Зaypaлья вo втopoй пoлoвинe гoлoцeнa]Google Scholar
  10. Dearing JA (1999) Environmental magnetic susceptibility using the Bartington MS2 system. Chi, KenilworthGoogle Scholar
  11. Epimakhov AV, Krause R (2013) Relative and absolute chronology of the settlement Kamennyi Ambar. In: Krause R, Koryakova LN (eds) Multidisciplinary investigations of Bronze Age settlements in the Southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, Bonn, pp 129–146Google Scholar
  12. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  13. Frachetti MD, Spengler RN, Fritz GJ, Maryashev AN (2010) Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84:993–1,010Google Scholar
  14. Gayduchenko LL (2002) Organic remains from fortified settlements and necropoli of the “Country of Towns”. In: Jones-Bley K, Zdanovich DG (eds) Complex societies of central Eurasia from the 3rd to the 1st millennium bc. Regional specifics in light of global models. 2: The Iron Age, archaeoecology, geoarchaeology, and palaeogeography, beyond central Eurasia. J Indo-Eur Stud 46:400–416Google Scholar
  15. Görz I, Bombach K, Kroner U, Ivanov KS (2004) Protolith and deformation age of the gneiss-plate of Kartali in the southern East Uralian Zone. Int J Earth Sci 93:275–286Google Scholar
  16. Grimm E (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  17. Kalis AJ, Stobbe A (2012) Archaeopalynological investigations in the Trans-Urals (Siberia). Bulletin of the Novosibirsk State Universtiy. Ser Hist Philol 11:130–136Google Scholar
  18. Khomutova VI (1995) The South of the Urals. Lake Uvildy. In: Khomutova VI, Andeeva MA, Davydova NN et al. (eds) The history of the lakes of Northern Asia. St. Petersburg, pp 22–40 [Xoмyтoвa BИ (1995) Южны Уpaл. Oзepo Увильды. In: Xoмyтoвa B, Aндpeeвa MA, Дaвыдoвa HH, Heycтpyeвa ИЮ, Paдaeвa BЮ, Cyбeттo ДA (eds) Иcтopия oзёp Ceвepa Aзии. Caнкт-Пeтepбypг, pp 22–40]Google Scholar
  19. Khotinskiy NA (1977) The Holocene of North Eurasia. Nauka, MoskauGoogle Scholar
  20. Khotinskiy NA (1984) Holocene climatic changes. In: Velichko AA (ed) Late quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 305–312Google Scholar
  21. Koryakova L, Epimakhov A (2007) The Urals and Western Siberia in the Bronze and Iron Ages. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Krause R, Koryakova LN (2013) Multidisciplinary investigations of Bronze Age settlements in the Southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, BonnGoogle Scholar
  23. Krause R, Korjakova LN, Fornasier J, Šarapova SV, Epimachov AV, Panteleeva SE, Berseneva NA, Molkhanov IV, Kalis AJ, Stobbe A, Thiemeyer H, Wittig R, König A (2010) Befestigte Siedlungen der bronzezeitlichen Sintašta-Kultur im Trans-Ural, Westsibirien (Russische Föderation). Eurasia Antiqua 16:97–129Google Scholar
  24. Kremenetski CV (1997) The late Holocene environmental and climate shift in Russia and surrounding lands. In: Dalfes HN, Kukla G, Weiss H (eds) Third millennium bc climate change and old world collapse. Springer, Berlin, pp 351–370CrossRefGoogle Scholar
  25. Kremenetski KV (2003) Steppe and forest-steppe belt of Eurasia: Holocene environmental history. In: Levine MA, Renfrew C, Boyle KV (eds) Prehistoric steppe adaptation and the horse. McDonald Institute for Archaeological Research, Cambridge, pp 11–28Google Scholar
  26. Kremenetski CV, Tarasov PE, Cherkinsky AE (1997) Postglacial development of the Kazakhstan pine forest. Géogr Phys Quat 51:391–404Google Scholar
  27. Krivonogov SK, Takahara H, Yamamuro M (2012) Regional to local environmental changes in southern Western Siberia: evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeogr Palaeoclimatol Palaeoecol 331–332:177–193. doi: 10.1016/j.palaeo.2011.09.013 CrossRefGoogle Scholar
  28. Kulikov PV (2005) Conspectus florae provinciae Czeljabinskiensis (plantae vasculares). Miass, YekatarinburgGoogle Scholar
  29. Lapteva EM, Korona OM (2013) The dynamics of the forest steppe vegetation of the southern Trans-Ural plain in the Holocene: natural changes and anthropogenic influence. In: Krause R, Koryakova LN (eds) Multidisciplinary investigations of Bronze Age settlements in the southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, Bonn, pp 327–342Google Scholar
  30. Lavrushin YA, Spiridonova EA (1999) Major paleoecological events of the Late Pleistocene and Holocene in the eastern part of the South Urals. In: Natural systems of the Southern Urals. Proceedings of Chelyabinsk State University, Chelyabinsk, pp 66–103Google Scholar
  31. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  32. Levina TP, Orlova LA (1993) The Holocene climate cycles in the south of Western Siberia. Geol Geophys 3:38–55Google Scholar
  33. Liu H, Wang Y, Tian Y, Zhu J, Wang H (2006) Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Rev Palaeobot Palynol 138:281–289CrossRefGoogle Scholar
  34. Maslenikova AV, Deryagin VV, Udachin VN (2012) Reconstruction of Holocene lake sedimentation conditions on the east slope of the Southern Urals. Lithosphere 2012:21–32 [Macлeнникoвa AB, Дepягин BB, Удaчин BH (2012) Peкoнcтpyкция ycлoви гoлoцeнoвo oзepнo ceдимeнтaции нa вocтoчнoм cклoнe южнoгoУpaлa. Литocфepa 2012:21–32]Google Scholar
  35. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  36. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, LondonGoogle Scholar
  37. Neyshtadt MI (1957) Forest history and paleogeography of the USSR during Holocene. Academy of Science of the USSR, Moscow [Иcтopия лecoв и пaлeoгeoгpaфия CCCP в гoлoцeнe. Издaтeлъcтвo Aкaдeмия Hayк CCCP, Mocквa]Google Scholar
  38. Nowaczyk NR (2001) Logging of magnetic susceptibility. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Basin analysis, coring, and chronological techniques, vol 1. Kluwer, Dordrecht, pp 155–169Google Scholar
  39. Oksanen J, Guillaume Blanchet F, Kindt R et al. (2013) Vegan—community ecology package. Package version 2.0–7Google Scholar
  40. Orloci B (1967) An agglomerative method for classification of plant communities. J Ecol 55(1):193–206CrossRefGoogle Scholar
  41. Pelánková B, Kuneš P, Chytrý M et al (2008) The relationship of modern pollen spectra to vegetation and climate along a steppe-forest tundra transition in southern Siberia, explored by decision trees. Holocene 18:1,259–1,271Google Scholar
  42. Plekhanova LN, Demkin VA, Zdanovich GB (2007) Soil evolution in river valleys of the Trans-Urals Steppes in the second half of the Holocene. Nauka, Moscow [Эвoлюция пoчв peчныx дoлин cтeпнoгo Зaypaлья вo втopoй пoлoвинe гoлoцeнa]Google Scholar
  43. Punt W et al (1976–2003) The Northwest European pollen flora (NEPF) vol I (1976), vol II (1980), vol III (1981), vol IV (1984) vol V (1988), vol VI (1991), vol VII (1996), vol VIII (2003). Elsevier, AmsterdamGoogle Scholar
  44. Prikhod’ko VE, Ivanov IV, Manakhov DV et al (2013) Soils, vegetation, and climate of the southern Transural region in the Middle Bronze Age (by the Example of the Arkaim Fortress). Eurasian Soil Sci 46:925–934CrossRefGoogle Scholar
  45. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, WienGoogle Scholar
  46. Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de botanique historique et palynology, MarseilleGoogle Scholar
  47. Reille M (1998) Pollen et spores d’Europe et d’Afrique du nord—supplement 2. Laboratoire de botanique historique et palynology, MarseilleGoogle Scholar
  48. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal. bp. Radiocarbon 51:1,111–1,150Google Scholar
  49. Riehm E, Ulrich B (1974) Bestimmung der Umtauschkapazität durch Schütteln des Bodens mit Ammoniumoxalat und Kaliumkarbonat. Landwirtsch Forsch 6:95–105Google Scholar
  50. Rühl L, Herbig Ch, Stobbe A (2014) Plant macro-remains and wood charcoal from Kamennyi Ambar, a Bronze Age fortified settlement of the Sintashta culture in the Southern Trans-Urals steppe, Russia. Veget Hist Archaeobot (Accepted)Google Scholar
  51. Ryabogina NE, Ivanov SN (2011) Ancient agriculture in Western Siberia: problems of argumentation, paleoethnobotanic methods, and analysis of data. Archaeol Ethnol Anthropol Eurasia 39:96–106. doi: 10.1016/j.aeae.2012.02.011 CrossRefGoogle Scholar
  52. Spengler R, Frachetti M, Doumani P, Rouse L, Cerasetti B, Bullion E, Mar’yashev A (2014) Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc R Soc B Biol Sci 281:20,133–382. doi: 10.1098/rspb.2013.3382 CrossRefGoogle Scholar
  53. Stobbe A (2013) Long term perspective of Holocene environmental changes in the steppe of the Trans-Ural (Russia): implications for understanding the human activities in the Bronze Age indicated by paleoecological studies. In: Krause R, Koryakova LN (eds) Multidisciplinary investigations of Bronze Age settlements in the southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, Bonn, pp 305–326Google Scholar
  54. Stobbe A, Rühl L, Nekrasov AE, Kositsev PA (2013) Fish—an important dietary component in the settlement of Kamennyi Ambar. In: Krause R, Koryakova LN (eds) Multidisciplinary investigations of Bronze Age settlements in the southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, Bonn, pp 129–146Google Scholar
  55. Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5CrossRefGoogle Scholar
  56. VDLUFA (1991) Gesamtstickstoff (Ntotal) nach Bremner gemäß DIN 19,684, Blatt 34Google Scholar
  57. Volkova VS, Levina TP (1985) The Holocene like model for investigation of interglazial epoch of Western Siberia. In: Khlonov AF (ed) Palynostratigraphy of the Mesozoic and Cenozoic of Siberia. Nauka, Novosibirsk, pp 74–84Google Scholar
  58. Walter H (1974) Die vegetation osteuropas, Nord- und Zentralasiens. Vegetationsmonographien der einzelnen Großräume 7. Fischer, StuttgartGoogle Scholar
  59. Walter H, Breckle SW (1986) Spezielle Ökologie der gemäßigten und arktischen Zonen Euro-Nordasiens Zonobiom VI-IX. Ökologie der Erde 3. UTB für Wissenschaft, StuttgartGoogle Scholar
  60. Wittig R, König A, Buttler KP (2013) The contemporary vegetation around the sampling plots of sediment profiles. In: Krause R, Koryakova LN (eds) Multidisciplinary investigations of Bronze Age settlements in the southern Trans-Urals (Russia). Frankfurter Archäologische Schriften 23, Habelt, Bonn, pp 295–304Google Scholar
  61. Zakh VA, Ryabogina NE, Chlachula NE (2010) Climate and environmental dynamics of the mid-to late Holocene settlement in the Tobol-Ishim forest-steppe region, West Siberia. Quat Int 220:95–101CrossRefGoogle Scholar
  62. Zhao Y, Liu H, Li F, Huang X, Sun J, Zhao W, Herzschuh U, Tang Y (2012) Application and limitations of the Artemisia/chenopodiaceae pollen ratio in arid and semi-arid China. Holocene 22:1,385–1,392. doi:  10.1177/0959683612449762

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Astrid Stobbe
    • 1
    Email author
  • Maren Gumnior
    • 2
  • Astrid Röpke
    • 1
  • Heike Schneider
    • 1
  1. 1.Abt. III, Vor- und FrühgeschichteInstitut für Archäologische Wissenschaften, Johann-Wolfgang Goethe-UniversitätFrankfurt Am MainGermany
  2. 2.Institut für Physische Geographie, Johann-Wolfgang Goethe-UniversitätFrankfurt Am MainGermany

Personalised recommendations