Vegetation History and Archaeobotany

, Volume 24, Issue 3, pp 427–440 | Cite as

Desiccated diaspores from building materials: methodological aspects of processing mudbrick for archaeobotanical studies and first results of a study of earth buildings in southwest Hungary

  • Tamás HennEmail author
  • Stefanie Jacomet
  • Dávid U. Nagy
  • Róbert W. Pál
Original Article


Earth buildings are among the richest sources of archaeobotanical materials from the recent past. Thus, mudbrick constructions are extremely rich in plant materials, especially chaff, straw, fruits and seeds. Recovery of these remains enables us to gain a comprehensive insight into the contemporary floras of past settlements and their surroundings. Mudbricks from southwest Hungary which were 100–150 years old and were used there as traditional natural building materials, were examined in this research from an archaeobotanical point of view. Techniques were used that mostly come from modern seed bank research, and the most efficient processing methods were tested and further developed. Different flotation procedures were compared and the minimum sample volume was also determined. A new sodium chloride (common salt) flotation method was developed, providing a useful separation procedure for the recovery of plant remains and diaspores (seeds) from mudbrick. The effectiveness of sodium chloride is similar to other chemicals used in seed bank research, but much more economical. The minimum and optimum sample volumes are 2,500–3,500 cm3; these are necessary to recover most of the taxa preserved in the bricks. A trend in the recovery of different sized seeds was also observed, revealing that the recovery of smaller seeds was less successful. Using the sodium chloride method, more than 18,000 desiccated diaspores were recovered and identified from 212 kg of mudbrick samples, from the period between 1850 and 1930. A total of 249 taxa were identified, most of which are weedy taxa connected to cereal and ruderal weed plant communities.


19th/20th century ad Diaspores Desiccated preservation Sample volume Sieve mesh size Sodium chloride flotation technique Weeds 



This research was carried out as part of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program––Elaborating and operating an inland student and researcher personal support system”. The project was subsidized by the European Union and co-financed by the European Social Fund. The authors thank Mónika Czigler for her help in processing the mudbricks and Patrick Murphy (Hellgate High School, Missoula) for the linguistic improvement of the manuscript.

Supplementary material

334_2014_499_MOESM1_ESM.xls (182 kb)
Supplementary material 1 (XLS 182 kb). Total list of finds from examined mudbrick samples and the relevant data


  1. Akeret Ö, Kühn M (2008) Desiccated plant macrofossils from the medieval castle of Marmorera, Switzerland, with a note on the identification of leaves of Cyperaceae. Environ Archaeol 13:37–50. doi: 10.1179/174963108x279201 CrossRefGoogle Scholar
  2. Ayyad S, Krzywinski K, Pierce R (1991) Mudbrick as a bearer of agricultural information: an archaeopalynological study. Nor Archaeol Rev 24:77–96CrossRefGoogle Scholar
  3. Badham K, Jones G (1985) An experiment in manual processing of soil samples for plant remains. Circaea 3:15–26Google Scholar
  4. Barbour MG, Lange RT (1967) Seed populations in some natural Australian topsoils. Ecology 48:153–155CrossRefGoogle Scholar
  5. Batlla D, Benech-Arnold RL (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci Res 16:47–59. doi: 10.1079/SSR2005234 CrossRefGoogle Scholar
  6. Bencze J (1954) Iregszemcse, Pusztapó, Bánkút, mezőségi talajainak gyommagfertőzöttsége [Weed seed infection of chernozem soils, in Hungarian]. Agrártudományi Egyetem Agronómiai Kar Kiadványai 1:3–30Google Scholar
  7. Bojňanský V, Fargašová A (2007) Atlas of seeds and fruits of Central and East-European flora. The Carpathian Mountains region, SpringerGoogle Scholar
  8. Boudreau EH (1971) Making the adobe brick. Fifth Street Press, Berkeley (CA)Google Scholar
  9. Brun C (2009) Biodiversity changes in highly anthropogenic environments (cultivated and ruderal) since the Neolithic in eastern France. Holocene 19:861–871CrossRefGoogle Scholar
  10. Buhler DD, Maxwell BD (1993) Seed separation and enumeration from soil using K2CO3-centrifugation and image analysis. Weed Sci 41:298–302Google Scholar
  11. Buhler DD, Netzer DA, Riemenschneider DE, Hartzler RG (1998) Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy 14:385–394. doi: 10.1016/S0961-9534(97)10075-7 CrossRefGoogle Scholar
  12. Cappers RTJ, Neef R (2012) Handbook of plant palaeoecology. Barkhuis, GroningenGoogle Scholar
  13. Carruthers WJ (1991) Plant remains recovered from daub from a 16th century manor house––Althrey Hall, near Wrexham, Clwyd, UK. Circaea 8:55–59Google Scholar
  14. Csicsely Á (2002) Szemelvények a vályog- és földépítés történetéből [A review of the technical literature on the history of earth architecture [in Hungarian, with English summary]. Építés- és Építészettudomány 30:273–287CrossRefGoogle Scholar
  15. Csicsely Á (2003) Vályogfalazatok és nyomószilárdsági vizsgálatai [Compressive strength tests on earth walls, in Hungarian]. Építőanyag 55:118–124Google Scholar
  16. Csontos P (2000) A magbank-ökológia alapjai II. A talajminták feldolgozásának módszerei és alkalmazhatóságuk összehasonlító elemzése [Seed bank ecology II. Technics for estimation of seed bank in soil samples and comparison of methods in Hungarian, with English summary]. Acta Agron Óváriensis 42:133–150Google Scholar
  17. Csontos P (2001) A természetes magbank kutatásának módszerei [Methods to study of natural seed banks, in Hungarian]. Scientia Kiadó, BudapestGoogle Scholar
  18. De Moulins D (1996) Sieving experiment: the controlled recovery of charred plant remains from modern and archaeological samples. Veget Hist Archaeobot 5:153–156. doi: 10.1007/BF00189446 CrossRefGoogle Scholar
  19. De Moulins D (2007) The weeds from the thatch roofs of medieval cottages from the south of England. Veget Hist Archaeobot 16:385–398CrossRefGoogle Scholar
  20. Deither J (1982) Down to earth: mud architecture––an old idea, a new future. Thames and Hudson, LondonGoogle Scholar
  21. Dickson C (1996) Food, medicinal and other plants from the 15th century drains of Paisley Abbey, Scotland. Veget Hist Archaebot 5:25–31. doi: 10.1007/BF00189432 CrossRefGoogle Scholar
  22. Dietsch-Sellami M-F, Matterne V (2002) Les graines et les fruits. In: Miskovsky J-C (ed) Géologie de la préhistoire: méthodes, techniques, applications. Association pour l’étude de l’environnement géologique de la Préhistoire, Paris, pp 717–733Google Scholar
  23. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. (Scripta Geobotanica 18) Goltze, GöttingenGoogle Scholar
  24. Ernst M, Jacomet S (2005) The value of the archaeobotanical analysis of desiccated plant remains from old buildings: methodological aspects and interpretation of crop weed assemblages. Veget Hist Archaeobot 15:45–56. doi: 10.1007/s00334-005-0077-8 CrossRefGoogle Scholar
  25. Fekete R (1975) Comparative weed-investigations in traditionally-cultivated and chemically-treated wheat and maize crops IV. Study of the weed-seed contents of the soils of maize crops. Acta Biologica Szeged 21:9–20Google Scholar
  26. Fischer E, Rösch M (1999) Denkmalpflege, Hausforschung und Archäobotanik. Pflanzen in Lehmstrukturen historischer Gebäude als Dokumente früheren Lebens. Denkmalpfl Bad-Württ 2:76–84Google Scholar
  27. Forcella F (1984) A species-area curve for buried viable seeds. Aust J Agr Res 35:645–652CrossRefGoogle Scholar
  28. Fratini F, Pecchioni E, Rovero L, Tonietti U (2011) The earth in the architecture of the historical centre of Lamezia Terme (Italy): characterization for restoration. Appl Clay Sci 53:509–516CrossRefGoogle Scholar
  29. Gonzalez SL, Ghermandi L (2012) Comparison of methods to estimate soil seed banks: the role of seed size and mass. Community Ecol 13:238–242. doi: 10.1556/ComEc.13.2012.2.14 CrossRefGoogle Scholar
  30. Green FJ (1979) Medieval plant remains: methods and results of archaeobotanical analysis from excavations in southern England with especial reference to Winchester and urban settlements of the 10th and 15th centuries. M. Phil. Thesis, University of SouthamptonGoogle Scholar
  31. Greig J (1989) Handbooks for archaeologists no. 4. Archaeobotany. European Science Foundation, StrasbourgGoogle Scholar
  32. Gross KL (1990) A comparison of methods for estimating seed numbers in the soil. J Ecol 78:1079–1093. doi: 10.2307/2260953 CrossRefGoogle Scholar
  33. Gyulai F (2001) Archaeobotanika. A kultúrnövények története a Kárpát-medencében a régészeti-növénytani vizsgálatok alapján [Archaeobotany. The history of cultivated plants in the Carpathian basin based on archaeological-botanical examinations, in Hungarian]. Jószöveg Kiadó, BudapestGoogle Scholar
  34. Hayashi I (1975) The special method inventory of buried seed population of weeds. Workshop on research methodology. Weed Sci 1:32–38Google Scholar
  35. Hendry GW (1931) The adobe brick as a historical source. Agric Hist 5:110–127Google Scholar
  36. Hendry GW, Bellue MK (1936) An approach to Southwestern agricultural history through adobe brick analysis. Symposium on prehistoric agriculture. University of New Mexico Bulletin, Albuquerque, pp 65–72Google Scholar
  37. Hendry GW, Kelly MP (1925) The plant content of adobe bricks. Calif Hist Soc Q 4:361–373CrossRefGoogle Scholar
  38. Henn T, Pál R (2010) A szántóföldi gyomnövényzet összetételének változása Baranya megyében az utóbbi négy évtized során [Changes of weed composition of arable fields during the last four decades in Baranya county, in Hungarian, with English summary]. Magy Gyomkut Techn 11:19–30Google Scholar
  39. Henn T, Czigler M, Pál R (2012) Délnyugat-magyarországi települések korabeli épületeiből származó vályogtéglák magkészletének elemzése [Analysis of seed content of mudbricks from old buildings in southwest Hungary, in Hungarian]. Kitaibelia 17:103Google Scholar
  40. Henn T, Czigler M, Pál R (2014) Vályogfalak gyomnövényei: a hazai gyomflóra átalakulása és elszegényedése [Weeds in adobe walls: changes and decline of the Hungarian weed flora, in Hungarian, with English summary]. Növényvédelem 50:331–338Google Scholar
  41. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591. doi: 10.2307/3237010 CrossRefGoogle Scholar
  42. Hillman G, Wales S, McLaren F, Evans J, Butler A (1993) Identifying problematic remains of ancient plant foods: A comparison of the role of chemical, histological and morphological criteria. World Archaeol 25:94–121CrossRefGoogle Scholar
  43. Holzner W (1978) Weed species and weed communities. Vegetation 38:13–20CrossRefGoogle Scholar
  44. Hosch S, Zibulski P (2003) The influence of inconsistent wet-sieving procedures on the macroremain concentration in waterlogged sediments. J Archaeol Sci 30:849–857. doi: 10.1016/S0305-4403(02)00263-7 CrossRefGoogle Scholar
  45. Hunyadi K, Pathy Z (1976) Keszthely környéki rétláp talajok gyommagfertőzöttsége [Weed seed infestation level in the marshland soils of the Keszthely area, in Hungarian, with English summary]. Növényvédelem 12:391–396Google Scholar
  46. Hunyadi K, Béres I, Kazinczi G (2000) Gyomnövények, gyomirtás, gyombiológia [Weeds, weed control, weed biology, in Hungarian]. Mezőgazda Kiadó, BudapestGoogle Scholar
  47. Jacomet S (2013) Archaeobotany: analyses of plant remains from waterlogged archaeological sites. In: Menotti F, O’Sullivan A (eds) The Oxford handbook of wetland archaeology. Oxford University Press, Oxford, pp 497–514Google Scholar
  48. Jacomet S, Kreuz A (1999) Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschungen. Ulmer, StuttgartGoogle Scholar
  49. Jarman HN, Legge AJ, Charles JA (1972) Retrieval of plant remains from archaeological sites by froth flotation. In: Higgs ES (ed) Papers in economic prehistory. Cambridge University Press, Cambridge, pp 39–48Google Scholar
  50. Király G (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok [New Hungarian herbal. The vascular plants of Hungary. Identification key, in Hungarian]. Aggteleki Nemzeti Park Igazgatóság, JósvafőGoogle Scholar
  51. Latałowa M, Badura M, Jarosinska J (2003) Archaeobotanical samples from non-specific urban contexts as a tool for reconstructing environmental conditions (examples from Elbląg and Kołobrzeg, northern Poland). Veget Hist Archaeobot 12:93–104. doi: 10.1007/s00334-003-0011-x CrossRefGoogle Scholar
  52. Letts J (1999) Smoke-blackened thatch: a unique source of late medieval plant remains from Southern England. English Heritage, LondonGoogle Scholar
  53. Lohmann J (1987) Paläo-Ethnobotanische Untersuchungen an Baumaterial von Bauernhäusern des 16–18. Jh. in der Oberpfalz. Diploma Thesis, University of GöttingenGoogle Scholar
  54. Malone CR (1967) A rapid method for enumeration of viable seeds in soil. Weeds 15:381–382CrossRefGoogle Scholar
  55. Matthews W (2010) Geoarchaeology and taphonomy of plant remains and microarchaeological residues in early urban environments in the Ancient Near East. Quat Int 214:98–113. doi: 10.1016/j.quaint.2009.10.019 CrossRefGoogle Scholar
  56. Medgyasszay P, Novák Á (2006) Föld- és szalmaépítészet [Earth- and straw architecture, in Hungarian]. TERC Kereskedelmi és Szolgáltató Kft, BudapestGoogle Scholar
  57. Mesgaran MB, Mashhadi HR, Zand E, Alizadeh HM (2007) Comparison of three methodologies for efficient seed extraction in studies of soil weed seedbanks. Weed Res 47:472–478. doi: 10.1111/j.1365-3180.2007.00592.x CrossRefGoogle Scholar
  58. Nagel M, Börner A (2010) The longevity of crop seeds stored under ambient conditions. Seed Sci Res 20:1–12. doi: 10.1017/S0960258509990213 CrossRefGoogle Scholar
  59. Newton C (2004) Plant tempering of Predynastic pisé at Adaïma in Upper Egypt: building material and taphonomy. Veget Hist Archaeobot 13:55–64CrossRefGoogle Scholar
  60. Novák R, Dancza I, Szentey L, Karamán J (2011) Az Ötödik Országos Gyomfelvételezés Magyarország szántóföldjein [The 5th Nationwide Weed Survey on the arable fields of Hungary, in Hungarian]. Vidékfejlesztési Minisztérium, BudapestGoogle Scholar
  61. Numata M (1984) Analysis of seeds in the soil. In: Knapp R (ed) Sampling methods and taxon analysis in vegetation science. (Handbook of Vegetation Science 4). Dr. W. Junk Publishers, The Hague, pp 161–169Google Scholar
  62. O’Rourke MK (1983) Pollen from adobe brick. J Ethnobiol 3:39–48Google Scholar
  63. Paušič I, Škornik S, Culiberg M, Kaligarič M (2010) Weed diversity in cottage building material used in the 19th century: past and present of the plant occurrence. Pol J Ecol 58:577–583Google Scholar
  64. Pearsall DM (2000) Paleoethnobotany: a handbook of procedures. Academic Press, San DiegoGoogle Scholar
  65. Pfister C (1985) Bevölkerung, Klima und Agrarmodernisierung 1525–1860, 2nd edn. Haupt, BernGoogle Scholar
  66. Quagliarini E, Lenci S (2010) The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J Cult Herit 11:309–314CrossRefGoogle Scholar
  67. R Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  68. Radics L (1998) Gyommaghatározó [Weed seed identification key, in Hungarian]. Mezőgazda Kiadó, BudapestGoogle Scholar
  69. Roberts HA (1981) Seed banks in soils. Adv Appl Biol 6:1–55Google Scholar
  70. Roberts HA, Ricketts ME (1979) Quantitative relationships between the weed flora after cultivation and the seed population in the soil. Weed Res 19:269–275CrossRefGoogle Scholar
  71. Rodríguez Bozán JI, Alvarez Rey H (1977) Métodos para el conteo de semillas de malas hierbas en el suelo. Cent Agric 4:79–89Google Scholar
  72. Rösch M, Fischer E (1999) Unter Putz und Pflasterstein. Bauforschung und Mittelalterarchäologie in Reutlingen, HeimatmuseumGoogle Scholar
  73. Schermann S (1967) Magismeret I-II. Akadémiai Kiadó, BudapestGoogle Scholar
  74. Spencer AJ (1979) Brick architecture in ancient Egypt. Aris & Philips, Warminster (WiltsGoogle Scholar
  75. Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc R Soc B-Biol Sci 279:1,421–1,429. doi: 10.1098/rspb.2011.1686 CrossRefGoogle Scholar
  76. Tsuyuzaki S (1993) Seed viability after immersion in K2CO3 solution. Seed Sci Technol 21:479–481Google Scholar
  77. Tsuyuzaki S (1994) Rapid seed extraction from soils by a flotation method. Weed Res 34:433–436. doi: 10.1111/j.1365-3180.1994.tb02039.x CrossRefGoogle Scholar
  78. Van der Veen M (1999) The economic value of chaff and straw in arid and temperate zones. Veget Hist Archaeobot 8:211–224CrossRefGoogle Scholar
  79. Van der Veen M (2001) The botanical evidence. In: Maxfield VA, Peacock DPS (eds) Survey and excavation Mons Claudius, 1987–1993. Vol 2: The Excavations, Part 1. (Documents de Fouilles 43) Institut Français d’Archéologie Orientale du Caire, Cairo, pp 174–247Google Scholar
  80. Van der Veen M (2007) Formation processes of desiccated and carbonized plant remains––the identification of routine practice. J Archaeol Sci 34:968–990. doi: 10.1016/j.jas.2006.09.007 CrossRefGoogle Scholar
  81. Van der Veen M, Fieller N (1982) Sampling seeds. J Archaeol Sci 9:287–298. doi: 10.1016/0305-4403(82)90024-3 CrossRefGoogle Scholar
  82. Vandorpe P, Jacomet S (2007) Comparing different pre-treatment methods for strongly compacted organic sediments prior to wet-sieving: a case study on Roman waterlogged deposits. Environ Archaeol 12:207–214. doi: 10.1179/174963107x226462 CrossRefGoogle Scholar
  83. Van der Veen M (2011) Consumption, trade and innovation. Exploring the botanical remains from the Roman and Islamic ports at Quseir al-Qadim, Egypt. (Journal of African Archaeology Monograph Series). Africa Magna Verlag, Frankfurt am MainGoogle Scholar
  84. Warr SJ, Thompson K, Kent M (1993) Seed banks as a neglected area of biogeographic research: a review of literature and sampling techniques. Prog Phys Geogr 17:329–347. doi: 10.1177/030913339301700303 CrossRefGoogle Scholar
  85. Wiles LJ, Barlin DH, Schweizer EE et al (1996) A new soil sampler and elutriator for collecting and extracting weed seeds from soil. Weed Technol 10:35–41Google Scholar
  86. Willcox G, Fornite S (1999) Impressions of wild cereal chaff in pisé from the tenth millennium at Jerf el Ahmar and Mureybet: northern Syria. Veget Hist Archaeobot 8:14–21CrossRefGoogle Scholar
  87. Willerding U (1991) Präsenz, Erhaltung und Repräsentanz von Pflanzenresten in archäologischem Fundgut. In: Van Zeist WA, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 25–51Google Scholar
  88. Willerding U (1996) Zur Verwendung von Pflanzen im Hausbau des Mittelalters und während der Neuzeit. In: Ostritz S, Einicke R (eds) Terra & Praehistoria. (Beiträge zur Ur- und Frühgeschichte Mitteleuropas 9), Beier & Beran, Wilkau-Hasslau, pp 117–123Google Scholar
  89. Wright PJ (2005) Flotation samples and some paleoethnobotanical implications. J Archaeol Sci 32:19–26CrossRefGoogle Scholar
  90. Zentai T (1991) A parasztház története a Dél-Dunántúlon [The history of farmhouses in the South-Transdanubium, in Hungarian]. Pannónia Könyvek - Baranya Megyei Könyvtár, PécsGoogle Scholar
  91. Zhao L-P, Wu G-L, Cheng J-M (2011) Seed mass and shape are related to persistence in a sandy soil in northern China. Seed Sci Res 21:47–53. doi: 10.1017/S0960258510000358 CrossRefGoogle Scholar
  92. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world, 4th edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tamás Henn
    • 1
    Email author
  • Stefanie Jacomet
    • 2
  • Dávid U. Nagy
    • 1
  • Róbert W. Pál
    • 1
  1. 1.Institute of Biology, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Institute for Prehistory and Archaeological Science IPASBasel UniversityBaselSwitzerland

Personalised recommendations