Vegetation History and Archaeobotany

, Volume 24, Issue 1, pp 101–120 | Cite as

Activity area analysis of a Roman period semi-subterranean building by means of integrated archaeobotanical and geoarchaeological data

  • Ákos Pető
  • Árpád Kenéz
  • Andrea Csabainé Prunner
  • Zsuzsanna Lisztes-Szabó
Original Article

Abstract

Everyday life in past human societies and the use of specific activity areas within settlements can be explored through the study of the remains of material culture as well as through the application of soil and plant remains analyses. This paper presents the results of complex archaeobotanical and geoarchaeological analyses conducted on 33 samples from a Roman period (1st century ad) semi-subterranean building excavated at the site of Győr-Ménfőcsanak, western Hungary. The aim of this methodological experiment was to try to identify the inner space use of the building with the help of macro- and micro-archaeobotanical and geoarchaeological data. Samples from cultural sediment layers were collected in accordance with a total horizontal sampling strategy using a grid of 50 × 50 cm quadrats. The identified micro- and macrofossils found in the samples from the activity layer imply that a large amount of plant material connected to cereals (stem, leaf, glume, spike fragment, cereal grain fragment, etc.) was either processed or deposited inside the building. The overall interpretation of the distribution patterns projected on the inner space and the spatial evaluation of the data have enabled us to put forward hypotheses regarding the use of the building. Significant differences were detected within the interior space of the feature, which reflect a well-defined selectivity in internal space usage and distinction in activity areas.

Keywords

Seeds Phytoliths Integrated archaeobotany Geoarchaeology Semi-subterranean buildings Roman period Pannonia Province 

Supplementary material

334_2014_491_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
334_2014_491_MOESM2_ESM.xlsx (18 kb)
Supplementary material 2 (XLSX 17 kb)
334_2014_491_MOESM3_ESM.xlsx (18 kb)
Supplementary material 3 (XLSX 18 kb)
334_2014_491_MOESM4_ESM.xlsx (15 kb)
Supplementary material 4 (XLSX 15 kb)

References

  1. Abrahams PW, Entwistle JA, Dodgshon RA (2010) The Ben Lawers historic landscape project: simultaneous multi-element analysis of former settlement and arable soils by X-ray fluorescence spectrometry. J Archaeol Method Theory 17:231–248CrossRefGoogle Scholar
  2. Albert RM, Henry DO (2004) Herding and agricultural activities at the Early Neolithic site of Ayn Abū Nukhayla (Wadi Rum, Jordan). The results of phytolith and spherulite analyses. Paléorient 30:81–92CrossRefGoogle Scholar
  3. Albert RM, Shahack-Gross R, Cabanes D, Gilboa A, Lev-Yadun S, Portillo M, Sharon I, Boaretto E, Weiner S (2008) Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. J Archaeol Sci 35:57–75CrossRefGoogle Scholar
  4. Arrhenius O (1929) Die Phosphatfrage. Z Pflanzenernähr Düng Bodenkd 10:185–194CrossRefGoogle Scholar
  5. Bailey DW (1990) The living house: signifying continuity. In: Samson R (ed) The social archaeology of houses. Edinburgh University Press, Edinburgh, pp 19–48Google Scholar
  6. Ball TB, Gardner JS, Brotherson JD (1996) Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. J Archaeol Sci 23:619–632CrossRefGoogle Scholar
  7. Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot 86:1,615CrossRefGoogle Scholar
  8. Banerjea RY, Bell M, Matthews W, Brown A (2013) Applications of micromorphology to understanding activity areas and site formation processes in experimental hut floor. Archaeol Anthropol Sci. doi:10.1007/s12520-013-0160-5
  9. Bethell P, Máthé I (1989) The use of soil phosphate analysis in archaeology: a critique. In: Henderson J (ed) Scientific analysis in archaeology and its interpretation (Oxford University Committee for Archaeology, Monograph 20). Oxford University Committee for Archaeology, Oxford, pp 1–19Google Scholar
  10. Brecher Gy (1960) A magismeret atlasza [The atlas of seed identification, in Hungarian]. Mezőgazdasági Kiadó, BudapestGoogle Scholar
  11. Britton K, Huntley J (2010) New evidence for the consumption of barley at Romano-British military and civilian sites, from the analysis of cereal bran fragments in faecal material. Veget Hist Archaeobot 20:41–52CrossRefGoogle Scholar
  12. Brombacher C, Jacomet S (1997) Ackerbau, Sammelwirtschaft und Umwelt: Ergebnisse archäobotanischer Untersuchungen. In: Schibler J, Hüster-Plogmann H, Jacomet S, Brombacher C, Gross-Klee E, Rast-Eicher A (eds) Ökonomie und Ökologie neolithischer und bronzezeitlicher Ufersiedlungen am Zürichsee. (Monographien der Kantonsarchäologie Zürich 20). FO-Publishing, Egg bei Zürich, pp 220–279Google Scholar
  13. Bryant VM, Weir G (1986) Pollen analysis of floor sediment samples: a guide to room use. In: Morris D (ed) Archeological investigations at Antelope House. (National Park Service Publication in Archaeology 19). National Park Service, Washington, DC, pp 58–71Google Scholar
  14. Buchsenschutz O (2005) Du comparatisme à la théorie architecturale. In: Buchsenschutz O, Mordant C (eds) Architectures protohistoriques en Europe occidentale de Néolithique final à l’âge du fer. CTHS, Paris, pp 49–64Google Scholar
  15. Buzás I (1988) Talaj- és agrokémiai vizsgálati módszerkönyv 2. [Soil and agrochemistry methodological handbook 2, in Hungarian]. Mezőgazdasági Kiadó, BudapestGoogle Scholar
  16. Calo CM (2013) Archaeobotanical remains found in a house at the archaeological site of Cardonal, valle de Cajón, Argentina: a view of food practices 1,800 years ago. Veget Hist Archaeobot 23:577–590CrossRefGoogle Scholar
  17. Cappers RTJ, Bekker RM, Jans JEA (2006) Digital seed atlas of the Netherlands [Digitale Zadenatlas van Nederland]. Barkhuis, GroningenGoogle Scholar
  18. Collins ME, Carter BJ, Gladfelter BG, Soutard RJ (1996) Pedological perspective in archaeological research. In: Proceedings of two symposia sponsored by Division S-5 of the Soil Science Society of America in Cincinnati, OH, 8 November 1993. (Soil Science Society of America Special Publication 44). Soil Science Society of America, MadisonGoogle Scholar
  19. Conway JS (1983) An investigation of soil phosphorous distribution within occupation deposits from a Romano-British hut group. J Archaeol Sci 10:117–128CrossRefGoogle Scholar
  20. Derreumaux M (2005) How to detect fodder and litter? A case study from the Roman site „Le Marais de Dourges”, France. Veget Hist Archaeobot 14:373–385CrossRefGoogle Scholar
  21. Engelmark R, Linderholm J (1996) Prehistoric land management and cultivation: a soil chemical study. In: Mejdahl V, Siemen P (eds) Proceedings from the 6th Nordic conference on the application of scientific methods in archaeology, Esbjerg 1993. Esbjerg Museum, Esbjerg, pp 315–322Google Scholar
  22. Entwistle JA, Abrahams PW, Dodgshon RA (1998) Multi-element analysis of soils from Scottish historical sites. Interpreting land-use history through physical and geochemical analysis of soil. J Archaeol Sci 25:53–68CrossRefGoogle Scholar
  23. Faithfull NT (2002) Methods in agricultural chemical analysis: a practical handbook. CABI Publishing, WallingfordCrossRefGoogle Scholar
  24. Füleky G (1973) Néhány hazai talajtípus összes foszfor-tartalmának összehasonlító vizsgálata [Comparative study for the determination of total phosphorus in some Hungarian soils, in Hungarian]. Agrokém Talajt [Agrochem Soil Sci] 22:311–318Google Scholar
  25. Füleky G (1983) Fontosabb hazai talajtípusok foszforállapota [Phosphorus status of characteristic soil types in Hungary, in Hungarian]. Agrokém Talajt [Agrochem Soil Sci] 32:7–30Google Scholar
  26. Goldberg P, Macphail RI (2006) Practical and theoretical geoarchaeology. Blackwell, OxfordGoogle Scholar
  27. Grabowski R, Linderholm J (2013) Functional interpretation of Iron Age longhouses at Gedved Vest, East Jutland, Denmark: multiproxy analysis of house functionality as a way of evaluating carbonised botanical assemblages. Archaeol Anthropol Sci. doi:10.1007/s12520-013-0161-4
  28. Gustafsson S (2000) Carbonized cereal grains and weed seeds in prehistoric houses—an experimental perspective. J Archaeol Sci 27:65–70CrossRefGoogle Scholar
  29. Gyulai F (2010) Archaeobotany in Hungary. Seed, fruit, food and beverage remains in the Carpathian Basin from the Neolithic to the Late Middle Ages. (Archaeolingua 21). Archaeolingua Alapítvány, BudapestGoogle Scholar
  30. Gyulai F, Kenéz Á (2009) Mediterrane Landwirtschaft in Pannonien? Makrobotanische Forschung in Keszthely-Fenékpuszta. In: Heinrich-Tamaska O, Straub P (eds) Keszthely-Fenékpuszta im Spiegel der Jahrtausende. A Balatoni Múzeum időszakos kiállításának katalógusa. Yeloprint, Szombathely, pp 31–35Google Scholar
  31. Gyulai F, Kenéz Á, Pető Á (2013) Archaeobotanical analysis of crop and food remains from the excavation in 2009 at the Late Roman fortification of Keszthely-Fenékpuszta. In: Heinrich-Tamáska O (ed) Keszthely-Fenékpuszta: Katalog der Befunde und ausgewählter Funde sowie neue Forschungsergebnisse. (Castellum Pannonicum Pelsonense 3). Leidorf, Rahden/Westf., pp 635–645Google Scholar
  32. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  33. Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith analysis: the example of rice and millets. J Archaeol Sci 32:739–752CrossRefGoogle Scholar
  34. Hendon J (1996) Archaeological approaches to the organization of domestic labor: household practice and domestic relations. Annu Rev Anthropol 25:41–61CrossRefGoogle Scholar
  35. Hillman GC (1984) Traditional husbandry and processing of archaic cereals in modern times. Part I: the glume-wheats. Bull Sumer Agric 1:114–152Google Scholar
  36. Hillman GC (1985) Traditional husbandry and processing of archaic cereals in modern times. Part 2: the free-threshing cereals. Bull Sumer Agric 2:1–31Google Scholar
  37. Hjulström B, Isaksson S (2009) Identification of activity area signatures in a reconstructed Iron Age house by combining element and lipid analyses of sediments. J Archaeol Sci 36:174–183CrossRefGoogle Scholar
  38. Holliday VT, Gartner WG (2007) Methods of soil P analysis in archaeology. J Archaeol Sci 34:301–333CrossRefGoogle Scholar
  39. Holliday VT, Lawrence-Zuniga D, Buchli V (2010) Prologue to uses of chemical residues to make statements about human activity. J Archaeol Method Theory 17:175–182CrossRefGoogle Scholar
  40. Horváth L (1987) Késővaskori ház és településtípusok Dél-Zalában [Späteisenzeitliche Haus- und Siedlungstypen auf dem südlichen Teil des Komitates Zala, in Hungarian]. Zalai Múz 1:59–80Google Scholar
  41. Horváth F, Dobolyi KZ, Morschhauser T, Lőkös L, Karas L, Szerdahelyi T (1995) FLÓRA Adatbázis 1.2. [FLÓRA Database 1.2., in Hungarian]. Taxon-lista és attribútum-állomány [List of taxa and attributes]. Flóra Munkacsoport MTA Ökológiai és Botanikai Kutatóintézete és MTM Növénytár. Vácrátót, BudapestGoogle Scholar
  42. Hutson SR, Magnonib A, Beach T, Terry RE, Dahlin BH, Schabelf MJ (2009) Phosphate fractionation and spatial patterning in ancient ruins: a case study from Yucatan. Catena 78:260–269CrossRefGoogle Scholar
  43. Jacomet S, Kreuz A (1999) Archäobotanik: Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. Ulmer, StuttgartGoogle Scholar
  44. Jones VH (1941) The nature and status of ethnobotany. Chron Bot 6:219–221Google Scholar
  45. Juggins S (2007) C2 Version 1.5. User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon TyneGoogle Scholar
  46. Kenéz Á, Gyulai F, Pető Á (2012) Keszthely-Fenékpuszta késő római erőd ásatásain előkerült ételmaradványok archaeobotanikai vizsgálata különös tekintettel a fogyasztott gabonafélékre és az elkészítés módjára [Archaeobotanical examination of food remains from Keszthely-Fenékpuszta Late Roman inner fortress with special focus on the consumption of cereals and the preparation of food, in Hungarian]. In: Kreiter A, Pető Á, Tugya B (eds) Környezet–Ember–Kultúra: Az alkalmazott természettudományok és a régészet párbeszéde [Environment–Human–Culture: dialogue between applied sciences and archaeology]. Magyar Nemzeti Múzeum, Nemzeti Örökségvédelmi Központ, Budapest, pp 173–179. http://www.mnm-nok.gov.hu/wp-content/uploads/2013/01/mnm-nok_kek-konferencia_12-04-25.pdf. Accessed 10 Dec 2013
  47. Kent S (1984) Analyzing activity areas, an ethnoarchaeological study of the use of space. University of New Mexico Press, AlbuquerqueGoogle Scholar
  48. Kent S (1987) Understanding the use of space: an ethnoarchaeological approach. In: Kent S (ed) Method and theory for activity area research, an ethnoarchaeological approach. Columbia University Press, New York, pp 1–60Google Scholar
  49. Kenward HK, Hall AR, Jones AKG (1980) A tested set of techniques for the extraction of plant and animal macrofossils from waterlogged archaeological deposits. Sci Archaeol 22:3–15Google Scholar
  50. Király G (ed) (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok [New Hungarian herbal. The vascular plants of Hungary. Identification key, in Hungarian]. Aggteleki Nemzeti Park Igazgatóság, JósvafőGoogle Scholar
  51. Knudson KJ, Frink L (2010) Soil chemical signatures of a historic sod house: activity area analysis of an arctic semisubterranean structure on Nelson Island, Alaska. Archaeol Anthropol Sci 2:265–282CrossRefGoogle Scholar
  52. Knudson KJ, Frink L, Hoffman BW, Price TD (2004) Chemical characterisation of Arctic soils: activity area analysis in contemporary Yupi’ik fish camp using ICP-AES. J Archaeol Sci 31:443–456CrossRefGoogle Scholar
  53. Kohler-Schneider M (2003) Contents of a storage pit from Late Bronze Age Stillfried, Austria: another record of the “new” glume wheat. Veget Hist Archaeobot 12:105–111CrossRefGoogle Scholar
  54. Kovács E (2001) Állattartás a vajdasági Doroszlón [Animal husbandry on Doroszló – Vajdaság, in Hungarian]. Agrártört Szemle [Hist rerum rustic] 43:581–583Google Scholar
  55. Kovács G (2006) A talajban előforduló régészeti anyagok mikromorfológiai vizsgálata [Micromorphological examination of archaeological materials found in soils, in Hungarian]. Agrokém Talajt [Agrochem Soil Sci] 55:499–514CrossRefGoogle Scholar
  56. López Varela SL, Dore CD (2010) Social spaces of daily life: a reflexive approach to the analysis of chemical residues by multivariate spatial analysis. J Archaeol Method Theory 17:249–278CrossRefGoogle Scholar
  57. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260CrossRefGoogle Scholar
  58. Maier U (2001) Archäobotanische Untersuchungen in der neolithischen Ufersiedlung Hornstaad-Hörnle IA am Bodensee. In: Maier U, Vogt R (eds) Siedlungsarchäeologie im Alpenvorland VI. Botanische und pedologische Untersuchungen zur Ufersiedlung Hornstaad-Hörnle IA. (Forsch Ber Vor- Frühgesch Bad-Württ 74). Theiss, Stuttgart, pp 9–384Google Scholar
  59. Marosi S, Somogyi S (1990) Magyarország Kistájainak Katasztere [Geographical regions of Hungary, in Hungarian]. Magyar Tudományos Akadémia, Földrajztudományi Kutató Intézet, BudapestGoogle Scholar
  60. Matthews W (2010) Geoarchaeology and taphonomy of plant remains and micro-archaeological residues in early urban environments in the Ancient Near East. Quat Int 214:98–113CrossRefGoogle Scholar
  61. Middleton WD, Price TD (1996) Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. J Archaeol Sci 23:673–687CrossRefGoogle Scholar
  62. Middleton WD, Barba L, Pecci A, Burton JH, Ortiz A, Salvini L, Suárez RR (2010) The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC–MS. J Archaeol Method Theory 17:183–208CrossRefGoogle Scholar
  63. Milek K (2006) Houses and households in early Icelandic society: geoarchaeology and the interpretation of social space. Doctoral Dissertation, University of CambridgeGoogle Scholar
  64. MSZ-21470/51-83 (1983) Környezetvédelmi talajvizsgálatok [Environmental soil examinations, in Hungarian]. A talaj kötöttségének meghatározása [Determination of soil texture]. Magyar Szabványügyi Hivatal [Hungarian Authority for Standards]. MSZH-Nyomda, BudapestGoogle Scholar
  65. MSZ-08-0206/2-78 (1978) A talaj egyes kémiai tulajdonságainak vizsgálata [Soil chemical analyses, in Hungarian]. Laboratóriumi vizsgálatok (pH érték, szódában kifejezett fenoftalein lúgosság, vízben oldható összes só, hidrolitos (y1 érték) és kicserélődési aciditás (y2 érték). Magyar Szabványügyi Hivatal [Hungarian Authority for Standards]. MSZH-Nyomda, BudapestGoogle Scholar
  66. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  67. Palmer C, Van der Veen M (2002) Archaeobotany and the social context of food. Acta Palaeobot 42:195–202Google Scholar
  68. Pearsall DM (2000) Paleoethnobotany: a handbook of procedures. Academic Press, LondonGoogle Scholar
  69. Pető Á (2013) Studying modern soil profiles of different landscape zones in Hungary: an attempt to establish a soil-phytolith identification key. Quat Int 287:149–161CrossRefGoogle Scholar
  70. Pető Á, Barczi A (2011) A Magyarországon előforduló meghatározó jelentőségű és gyakori talajtípusok fitolit profiljának katasztere IV. A vizsgált csernozjom és szikes talajok eredményei [Phytolith profile cadastre of the most significant and abundant soil types of Hungary IV. Results of the examined chernozem and alkaline soil profiles, in Hungarian]. Tájökológiai Lapok [Hung J Landsc Ecol] 9:147–190Google Scholar
  71. Pető Á, Kenéz Á (2013) An attempt to analyse the use of the inner space of semi-subterranean buildings by the means of integrated archaeobotanical and geoarchaeological data. A case study from western Hungary. Abstracts. In: 16th Conference of the international work group for palaeoethnobotany (16th IWGP). Thessaloniki, GreeceGoogle Scholar
  72. Pető Á, Kenéz Á, Baklanov S, Ilon G, Füleky G (2012a) Talajtani paraméterek alkalmazása régészeti térhasználat elemzésben. Módszertani esettenulmány Győr–Ménfőcsanak-Szélesföldek lelőhelyről [Prospects of applying soil parameters in archaeological activity area analysis. A methodological case study from the Győr–Ménfőcsanak-Szélesföldek archaeological site, in Hungarian]. Agrokém Talajt [Agrochem Soil Sci] 61:57–76CrossRefGoogle Scholar
  73. Pető Á, Kenéz Á, Baklanov S, Ilon G (2012b) Integrált archaeobotanikai vizsgálatokra alapozottobjektumon belüli térhasználat-elemzés: Módszertani esettanulmány Győr-Ménfőcsanak, Széles-földek lelőhelyről [Spatial analysis of the use of inner space based on integrated archaeobotanical analyses: a methodological case study from Győr-Ménfőcsanak, Széles-földek archaeological site, in Hungarian]. Archeom Műh [Archeom Workshop] 9:173–203Google Scholar
  74. Pető Á, Gyulai F, Pópity D, Kenéz Á (2013) Macro- and micro-archaeobotanical study of a vessel content from a Late Neolithic structured deposition from southeastern Hungary. J Archaeol Sci 40:58–71CrossRefGoogle Scholar
  75. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San DiegoGoogle Scholar
  76. Portillo M, Albert RM (2011) Husbandry practices and livestock dung at the Numidian site of Althiburos (el Médéina, Kef Governorate, northern Tunisia): the phytolith and spherulite evidence. J Archaeol Sci 38:3,224–3,233CrossRefGoogle Scholar
  77. Portillo M, Kadowaki S, Nishiaki Y, Albert RM (2014) Early Neolithic household behavior at Tell Seker al-Aheimar (Uppere Khabur, Syria): a comparison to ethnoarchaeological study of phytoliths and dung spherulites. J Archaeol Sci 42:107–118CrossRefGoogle Scholar
  78. Radics L (1998) Gyommaghatározó [Weed seed identification, in Hungarian]. Mezőgazda Kiadó, BudapestGoogle Scholar
  79. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1,111–1,150Google Scholar
  80. Retallack GJ (2001) Soils of the past. An introduction to paleopedology. Blackwell, OxfordGoogle Scholar
  81. Rondelli B, Lancelotti C, Madella M et al (2014) Anthropic activity markers and spatial variability: an ethnoarchaeological experiment in a domestic unit of Northern Gujarat (India). J Archaeol Sci 41:482–492CrossRefGoogle Scholar
  82. Roper DC (1979) The method and theory of site catchment analysis: a review. Adv Archaeol Method Theory 2:119–140Google Scholar
  83. Rösch M (2008) New aspects of agriculture and diet of the early medieval period in central Europe: waterlogged plant material from sites in south-western Germany. Veget Hist Archaeobot 17:225–238CrossRefGoogle Scholar
  84. Rosen AM (1992) Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. In: Rapp G, Mulholland SC (eds) Phytolith systematics: emerging issues. Plenum Press, New York, pp 129–147CrossRefGoogle Scholar
  85. Rosen AM (2005) Phytolith indicators of plant and land use at Çatalhöyük. In: Hodder I (ed) Inhabiting Çatalhöyük: reports from the 1995–99 seasons. Çatalhöyük Research Project 4. (BIAA Monographs 38). British Institute of Archaeology at Ankara, Ankara, pp 203–212Google Scholar
  86. Sabján T (1999) A veremház rekonstrukciója [Die Rekonstruktion des Grubenhauses, in Hungarian]. In: Bencze Z, Gyulai F, Sabján T, Takács M (eds) Egy árpádkori veremház feltárása és rekonstrukciója [Ausgrabung und Rekonstruktion eines Grubenhauses aus der Árpádenzeit]. (Monumenta Historica Budapestinensia 10). Budapesti Történeti Múzeum, Budapest, pp 131–176Google Scholar
  87. Schermann S (1966) Magismeret I–II. [Seed identification I–II]. Akadémiai Kiadó, BudapestGoogle Scholar
  88. Scott Cummings L (1988) Sampling prehistoric structures for pollen and starch granules. In: Bryant VM, Wrenn JH JH (eds) New developments in palynomorph sampling, extraction, and analysis. (American Association of Stratigraphic Palynologists, Contributions Series 33). AASP, Houston, pp 35–51Google Scholar
  89. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  90. Sulas F, Madella M (2012) Archaeology at the micro-scale: micromorphology and phytoliths at a Swahili stonetown. Archaeol Anthropol Sci 4:145–159CrossRefGoogle Scholar
  91. Sullivan KA, Kealhofer L (2004) Identifying activity areas in archaeological soils from a colonial Virginia house lot using phytolith analysis and soil chemistry. J Archaeol Sci 31:1,659–1,673CrossRefGoogle Scholar
  92. Tankó K (2004) Rekonstruktion eines Latènezeitlichen Grubenhauses aus Ménfőcsanak-Szeles (B 83). Commun Archaeol Hung 105:112Google Scholar
  93. Tankó K (2010) Late Iron Age settlement in the vicinity of Ménfőcsanak. In: Borhy L (ed) Studia Celtica Classica et Romana Nicolae Szabó Septuagesimo dedicata. Pytheas, Budapest, pp 249–260Google Scholar
  94. Terry RE, Fernández FG, Parnell JJ, Inomata T (2004) The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. J Archaeol Sci 31:1,237–1,250CrossRefGoogle Scholar
  95. Tímár L (2010) Les reconstitutions possible des constructions de l’âge du Fer, découvertes à Ráckeresztúr. In: Borhy L (ed) Studia Celtica Classica et Romana Nicolae Szabó Septuagesimo dedicata. Pytheas, Budapest, pp 261–272Google Scholar
  96. Tímár L (2011) Interpretation of the sunken houses of the Late Iron Age. Ősrégészeti Levelek 13:290–302Google Scholar
  97. Van Zeist WA (1984) List of names of wild and cultivated cereals. Bull Sumer Agric 1:8–16Google Scholar
  98. Vyncke K, Degryse P, Vassilieva E, Waelkens M (2011) Identifying domestic functional areas. Chemical analysis of floor sediments at the Classical-Hellenistic settlement at Düzen Tepe (SW Turkey). J Archaeol Sci 38:2,274–2,292CrossRefGoogle Scholar
  99. Wells EC (2006) Cultural soilscapes. In: Frossard E, Blum WEH, Warkentin BP (eds) Function of soils for human societies and the environment. (Geological Society Special Publication 266). Geological Society, London, pp 125–132Google Scholar
  100. Wells EC (2011) Sampling design and inferential bias in archaeological soil chemistry. J Archaeol Method Theory 17:209–230CrossRefGoogle Scholar
  101. WRB, IUSS Working Group (2006) World reference base for soil resources. A framework for international classification, correlation and communication, 2nd edn (World Soil Resources Reports 103). Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  102. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean basin, 4th edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ákos Pető
    • 1
  • Árpád Kenéz
    • 1
  • Andrea Csabainé Prunner
    • 2
  • Zsuzsanna Lisztes-Szabó
    • 3
  1. 1.Laboratory for Applied Research, National Heritage Protection CentreHungarian National MuseumBudapestHungary
  2. 2.Department of Spatial Planning and GISSzent István UniversityGödöllőHungary
  3. 3.Department of Agricultural Botany and Crop PhysiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations