Vegetation History and Archaeobotany

, Volume 24, Issue 1, pp 121–133 | Cite as

A tale of multi-proxies: integrating macro- and microbotanical remains to understand subsistence strategies

  • Juan José García-Granero
  • Carla Lancelotti
  • Marco Madella
Original Article


The integrated analysis of several proxies in order to answer a research question is a widespread approach in palaeoecology, but it is not well developed in archaeobotanical research. Applying a multi-proxy approach to archaeobotany has several advantages: a more diverse anatomical and taxonomical representation of the original plant input and a better understanding of taphonomic processes, both depositional and post-depositional. The aim of this paper is to show how a multi-proxy approach can enrich our understanding of plant-related subsistence strategies. Macro and microbotanical analyses were carried out on samples from Shikarpur, a Chalcolithic settlement in Kachchh, Gujarat, northwest India. This settlement is located in a semi-arid region with wet/dry cycles and highly saline soils that influence the preservation of charred remains, so that they do not offer the full picture of plant-related subsistence strategies. We show that the combination of different proxies is crucial to cross-validate the results and to gain a wider understanding of plant use strategies. The inhabitants of Shikarpur relied on a double-cropping system based on local small millets and pulses, and they also consumed cereals, tubers and sedges.


Multi-proxy Phytoliths Starch grains Macrobotanical remains Archaeobotany Indus valley 



This research benefited from discussions with P. Ajithprasad, H. Barton and the participants of the 16th Conference of the IWGP in Thessaloniki (Greece). Thanks are due to the members of the Department of Archaeology and Ancient History, MSU Baroda, for helping during the 2012 fieldwork at Shikarpur, and the Archaeological Survey of India for granting permission for the excavation. Some of the modern reference seeds are from the US Department of Agriculture (USDA) gene bank. JJGG acknowledges funding from a JAE-Predoc doctoral research grant (Spanish National Research Council and European Social Fund) and CL from the SimulPast project, funded by the Spanish Ministry for Science and Innovation (CSD2010-00034).


  1. Arora RK (1977) Job’s tears (Coix lacryma-jobi)—a minor food and fodder crop of Northeastern India. Econ Bot 31:358–366. doi: 10.1007/BF02866887 CrossRefGoogle Scholar
  2. Bahn KK, Ajithprasad P (2008) Excavations at Shikarpur 2007–2008: a coastal port and craft production center of the Indus Civilization in Kutch, India, Accessed November 2013
  3. Barton H, Denham T (2011) Prehistoric vegeculture and social life in Island Southeast Asia and Melanesia. In: Barker G, Janowski M (eds) Why cultivate? Anthropological and archaeological approaches to foraging-farming transitions in southeast Asia. McDonald Institute, Cambridge, pp 17–25Google Scholar
  4. Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veget Hist Archaeobot 15:235–251. doi: 10.1007/s00334-006-0066-6 CrossRefGoogle Scholar
  5. Chandler-Ezell K, Pearsall DM, Zeidler JA (2006) Root and tuber phytoliths and starch grains document manioc (Manihot esculenta), arrowroot (Maranta arundinacea), and llerén (Calathea sp.) at the Real Alto Site. Ecuador. Econ Bot 60:103–120. doi: 10.1663/0013-0001(2006)60[103:RATPAS]2.0.CO;2
  6. Delhon C, Martin L, Argant J, Thiébault S (2008) Shepherds and plants in the Alps: multi-proxy archaeobotanical analysis of neolithic dung from “La Grande Rivoire” (Isère, France). J Archaeol Sci 35:2,937–2,952. doi: 10.1016/j.jas.2008.06.007
  7. Denham TP, Haberle SG, Lentfer C, Fullagar R, Field J, Therin M, Porch N, Winsborough B (2003) Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science 301:189–193. doi: 10.1126/science.1085255 CrossRefGoogle Scholar
  8. Dickau R, Bruno MC, Iriarte J, Prümers H, Betancourt CJ, Holst I, Mayle FE (2012) Diversity of cultivars and other plant resources used at habitation sites in the Llanos de Mojos, Beni, Bolivia: evidence from macrobotanical remains, starch grains, and phytoliths. J Archaeol Sci 39:357–370. doi: 10.1016/j.jas.2011.09.021 CrossRefGoogle Scholar
  9. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 101–181Google Scholar
  10. Fuller DQ (2003) African crops in prehistoric South Asia: a critical review. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields. Progress in African archaeobotany. Heinrich-Barth Institut, Köln, pp 239–271Google Scholar
  11. Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20:1–86. doi: 10.1007/s10963-006-9006-8 CrossRefGoogle Scholar
  12. Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:219–246. doi: 10.1179/174963106x123232 CrossRefGoogle Scholar
  13. Fuller DQ, Madella M (2001) Issues in Harappan archaeobotany: retrospect and prospect. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect. Protohistory, vol 2. Manohar, New Delhi, pp 317–390Google Scholar
  14. Gadekar C, Rajesh SV, Ajithprasad P (2014) Shikarpur lithic assemblage: new questions regarding Rohri chert blade production. J Lithic Stud 1:137–149. doi: 10.2218/jls.v1i1.764 CrossRefGoogle Scholar
  15. Hart TC (2011) Evaluating the usefulness of phytoliths and starch grains found on survey artifacts. J Archaeol Sci 38:3,244–3,253. doi: 10.1016/j.jas.2011.06.034
  16. Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith analysis: the example of rice and millets. J Archaeol Sci 32:739–752. doi: 10.1016/j.jas.2004.12.010 CrossRefGoogle Scholar
  17. Haslam M (2004) The decomposition of starch grains in soils: implications for archaeological residue analyses. J Archaeol Sci 31:1,715–1,734. doi: 10.1016/j.jas.2004.05.006
  18. Henry AG, Piperno DR (2008) Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqa’i, Syria. J Archaeol Sci 35:1,943–1,950. doi: 10.1016/j.jas.2007.12.005
  19. Horrocks M (2005) A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. J Archaeol Sci 32:1,169–1,175. doi: 10.1016/j.jas.2005.02.014
  20. IAR (1995) Palaeobotanical and pollen analytical investigations: Shikarpur. In: Mahapatra SK (ed) Indian archaeology review 1990–1991. Archaeological Survey of India, New DelhiGoogle Scholar
  21. IAR (2002) Palaeobotanical and pollen analytical investigations: Shikarpur. In: Menon KG (ed) Indian archaeology review 1996–1997. Archaeological Survey of India, New DelhiGoogle Scholar
  22. ICSN (2011) The International code for starch nomenclature. Accessed 16 December 2013
  23. Krishna Kumari S, Thayumanaban B (1998) Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods Hum Nutr 53:47–56. doi: 10.1023/A:1008083020810 CrossRefGoogle Scholar
  24. Lancelotti C, Madella M (2012) The ‘invisible’ product: developing markers for identifying dung in archaeological contexts. J Archaeol Sci 39:953–963. doi: 10.1016/j.jas.2011.11.007 CrossRefGoogle Scholar
  25. Lu T (2003) The survival of starch residue in a subtropical environment. In: Hart DM, Wallis LA (eds) Phytolith and starch research in the Australian-Pacific-Asian Regions: the state of the art. Papers from a conference held at the ANU, August 2001, Canberra, Australia. Pandanus Books, Canberra, pp 119–126Google Scholar
  26. Liu L, Ge W, Bestel S, Jones D, Shi J, Song, Y, Chen X (2011) Plant exploitation of the last foragers at Shizitan in the Middle Yellow River Valley China: evidence from grinding stones. J Archaeol Sci 38:3,524-3,532. doi: 10.1016/j.jas.2011.08.015 II
  27. Lu H, Zhang J, Wu N, Liu K, Xu D, Li Q (2009) Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4:e4448. doi: 10.1371/journal.pone.0004448 CrossRefGoogle Scholar
  28. Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83. doi: 10.1016/j.quaint.2011.09.008 CrossRefGoogle Scholar
  29. Madella M, Power-Jones AH, Jones MK (1998) A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. J Archaeol Sci 25:801–803. doi: 10.1006/jasc.1997.0226 CrossRefGoogle Scholar
  30. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260. doi: 10.1093/aob/mci172 CrossRefGoogle Scholar
  31. Madella M, Jones MK, Echlin P, Powers-Jones A, Moore M (2009) Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quat Int 193:32–40. doi: 10.1016/j.quaint.2007.06.012 CrossRefGoogle Scholar
  32. Madella M, Lancelotti C, García-Granero JJ (2013) Millet microremains – an alternative approach to understand cultivation and use of critical crops in prehistory. Archaeol Anthropol Sci. doi: 10.1007/s12520-013-0130-y Google Scholar
  33. Mindzie CM, Doutrelepont H, Vrydaghs L, Swennen RL, Swenned RJ, Beeckman H, de Langhe E, De Maret P (2001) First archaeological evidence of banana cultivation in central Africa during the third millennium before present. Veget Hist Archaeobot 10:1–6. doi: 10.1007/PL00013367 CrossRefGoogle Scholar
  34. Nasu H, Momohara A, Yasuda Y, He J (2007) The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal BP) in central China, with reference to the domestication centre in Asia. Veget Hist Archaeobot 16:481–494. doi: 10.1007/s00334-006-0068-4 CrossRefGoogle Scholar
  35. Neef R, Cappers RTJ, Bekker RM (2012) Digital atlas of economic plants in archaeology. Barkhuis & Groningen University Library, GroningenGoogle Scholar
  36. Out W, Madella M (in press) The identification of non-dietary crop products from Eleusine coracana (L.) Gaertn. ssp. coracana, Pennisetum glaucum (L.) R. Br. and Sorghum bicolor (L.) Moench by phytolith analysis. In: Thanheiser U (ed) Proceedings 7th international workshop for African archaeobotany. Barkhuis, GroningenGoogle Scholar
  37. Piperno DR, Weiss E, Holst I, Nadel D (2004) Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670–673. doi: 10.1038/nature02734 CrossRefGoogle Scholar
  38. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5,019–5,024.
  39. Pokharia AK, Kharakwal JS, Rawat RS, Osada T, Nautiyal CM, Srivastava A (2011) Archaeobotany and archaeology at Kanmer, a Harappan site in Kachchh, Gujarat: evidence for adaptation in response to climatic variability. Curr Sci 100:1,833–1,846Google Scholar
  40. Pokharia AK, Kharakwal JS, Srivastava A (2014) Archaeobotanical evidence of millets in the Indian subcontinent with some observations on their role in the Indus civilization. J Archaeol Sci 42:442–455. doi: 10.1016/j.jas.2013.11.029 CrossRefGoogle Scholar
  41. Portillo M, Albert RM, Henry DO (2009) Domestic activities and spatial distribution in Ain Abū Nukhayla (Wadi Rum, Southern Jordan): the use of phytoliths and spherulites studies. Quat Int 193:174–183. doi: 10.1016/j.quaint.2007.06.002 CrossRefGoogle Scholar
  42. Reddy SN (1997) If the threshing floor could talk: integration of agriculture and pastoralism during the Late Harappan in Gujarat, India. J Anthropol Archaeol 16:162–187. doi: 10.1006/jaar.1997.0308 CrossRefGoogle Scholar
  43. Rosen AM, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. J Archaeol Sci 21:125–132. doi: 10.1006/jasc.1994.1013 CrossRefGoogle Scholar
  44. Torrence R (2006) Starch and archaeology. In: Torrence R, Barton H (eds) Ancient starch research. Left Coast Press, Walnut Creek, pp 17–34Google Scholar
  45. Wright K (1992) A classification system for ground stone tools from the prehistoric Levant. Paléorient 18:53–81. doi: 10.3406/paleo.1992.4573 CrossRefGoogle Scholar
  46. Yang X, Perry L (2013) Identification of ancient starch grains from the tribe Triticeae in the North China Plain. J Archaeol Sci 40:3,170–3,177. doi:  10.1016/j.jas.2013.04.004
  47. Yang X, Zhang J, Perry L, Ma Z, Wan Z, Li M, Diao X, Lu H (2012) From the modern to the archaeological: starch grains from millets and their wild relatives in China. J Archaeol Sci 39:247–254. doi: 10.1016/j.jas.2011.09.001 CrossRefGoogle Scholar
  48. Yang X, Ma Z, Li Q, Perry L, Huan X, Wan Z, Li M, Zheng J (2013) Experiments with lithic tools: understanding starch residues from crop harvesting. Archaeometry. doi: 10.1111/arcm.12034 Google Scholar
  49. Zhang J, Lu H, Wu N, Yang X, Diao X (2011) Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS ONE 6:e19726. doi: 10.1371/journal.pone.0019726 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan José García-Granero
    • 1
    • 2
  • Carla Lancelotti
    • 1
    • 3
  • Marco Madella
    • 1
    • 2
    • 4
  1. 1.Complexity and Socio-Ecological Dynamics Research Group—CaSEsBarcelonaSpain
  2. 2.Department of Archaeology and AnthropologyInstitució Milà i Fontanals, Spanish National Research Council (IMF-CSIC)BarcelonaSpain
  3. 3.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
  4. 4.ICREA—Department of HumanitiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations