Vegetation History and Archaeobotany

, Volume 24, Issue 2, pp 267–277 | Cite as

Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6,500 years

  • Florencia Paula BamonteEmail author
  • María Virginia Mancini
  • Gonzalo David Sottile
  • María Alejandra Marcos
  • Claudia Gogorza
Original Article


We report a palaeoenvironmental reconstruction since 6,650 cal. bp from the Lago San Martín area, from a peat-bog sequence, Mallín Paisano Desconocido, located at 48°58′S, 72°14′W. Between 6,650 and 4,500 cal. bp we can infer a shrub steppe dominated by Asteraceae subf. Asteroideae associated with other shrubs under relatively dry conditions, through an intensification of the westerly wind belt and a steepening in the west–east precipitation gradient. From 4,500 to 3,000 cal. bp a shrub-grass steppe development suggests a slight increase in moisture conditions although the environmental conditions remain dry. From 3,000 cal. bp a grass steppe represented by Poaceae and subordinate herbs developed, suggesting an increase in moisture availability and weaker westerly flow precipitation. The last 400 cal. bp were characterized by a change from grass to shrubby communities which could be related to the beginning of the Little Ice Age, whereas the last century shows signals of anthropic impact. The palaeoenvironmental interpretation from the Lago San Martín basin is based on moisture availability variations in relation to precipitation pattern changes of westerly origin. These trends are consistent with interpretations of records from the Andean and extra-Andean areas. The comparison with other sequences allows us to interpret the palaeoenvironmental changes in the Lago San Martín area and to integrate these variations within a regional framework, interpreting them in relation to southern past climatic changes. At a regional scale, the records show an increase in westerly intensity during the mid-Holocene, whereas weaker westerly flows are postulated for the late Holocene.


Southern Patagonia Lago San Martín basin Mid and late Holocene Palaeoenvironmental reconstruction Westeast environmental gradient 



This research was financially supported by CONICET (PIP 1265) and UNMdP (EXA 510/10; EXA 602/12). We thank the National Science Foundation (NSF) Arizona and T. Jull for financial support for AMS radiocarbon dating. We are grateful to the Díaz (Ea. La Federica) and Muruzábal (Ea. Sierra Nevada) families for allowing access to the workplace and to Marcos Emanuel Echeverría for logistic support in the field and critical discussions.


  1. Aniya M (1995) Holocene glacial chronology in Patagonia: Tyndall and Uppsala glaciers. Artic Alp Res 27:311–322CrossRefGoogle Scholar
  2. Aüer V, Cappannini D (1957) La erosión en la región de los lagos San Martín y Tar. IDIA Marzo, pp 7–27Google Scholar
  3. Bamonte FP (2012) Cambios paleoecológicos y su posible relación con las ocupaciones humanas durante el Holoceno en el SO de Santa Cruz, Argentina. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del PlataGoogle Scholar
  4. Bamonte FP, Mancini MV (2009) Características ambientales del ecotono Bosque-Estepa durante el Holoceno medio (Santa Cruz, Argentina). In: Salemme M, Santiago F, Alvarez M, Piana E, Vazquez M, Mansur ME (eds) Arqueología de Patagonia: una mirada desde el último confín. Editorial Utopías Ushuaia, pp 881–892Google Scholar
  5. Bamonte FP, Mancini MV (2011) Palaeoenvironmental changes since Pleistocene–Holocene transition: pollen analysis from a wetland in Southwestern Patagonia (Argentina). Rev Palaeobot Palynol 165:103–110CrossRefGoogle Scholar
  6. Bamonte FP, Mancini MV, Belardi JB, Espinosa S (2013) Inferencias paleoambientales a partir del análisis polínico de sitios arqueológicos del área del lago San Martín (Santa Cruz, Argentina). Magallania 41:205–220CrossRefGoogle Scholar
  7. Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of Palaeoecology and Palaeohydrology. Wiley, Chichester, pp 423–451Google Scholar
  8. Bianchi MM, Olabuenaga S (2006) A three-year pollen record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 22:247–257CrossRefGoogle Scholar
  9. Bonarrelli G, Nágera JJ (1921) Observaciones geológicas en las inmediaciones del lago San Martín (Territorio de Santa Cruz). Boletín Ministerio de Agricultura. Dirección General de Minas, Geología e Hidrologíaa Serie B (Geología) 27:39Google Scholar
  10. Borrelli P, Oliva G (eds) (2001) Ganadería ovina sustentable en la Patagonia Austral. Tecnología de manejo intensivo. INTA, Santa CruzGoogle Scholar
  11. Brown CA (1960) Palynological techniques. Louisana State University, Baton RougeGoogle Scholar
  12. Correa MM (ed) (1984) Flora Patagónica. IV-a: Dicotiledóneas Dialipétalas (Salocaceae a Cruciferae). Tomo VIII. INTA, Buenos AiresGoogle Scholar
  13. Correa MM (ed) (1999) Flora Patagonica. VI: Dicotiledóneas Gamopétalas (Ericaceae a Calyceraceae).Tomo VIII. INTA, Buenos AiresGoogle Scholar
  14. De Porras ME (2010) Dinámica de la vegetación de la Meseta Central de Santa Cruz durante los últimos 11.000 años: forzantes bióticos y abióticos. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del PlataGoogle Scholar
  15. Echeverria ME, Sottile GD, Mancini MV, Fontana SL (2014) Nothofagus forest dynamics and palaeoenvironmental variations during the mid and late Holocene, in southwest Patagonia. Holocene. doi: 10.1177/0959683614534742 Google Scholar
  16. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  17. Fletcher MS, Moreno PI (2011) Zonally symmetric changes in the strength and positions of the Southern Westerlies drove atmospheric CO2 variations over the past 14 k.y. Geology 39:419–422CrossRefGoogle Scholar
  18. Fletcher MS, Moreno PI (2012) Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat Int 253:32–46CrossRefGoogle Scholar
  19. Garreaud RD (2007) Precipitation and circulation covariability in the extratropics. J Clim 20:4,789-4,797Google Scholar
  20. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American Climate. PALAEO 3 Special Issue (LOTRED South America). Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195Google Scholar
  21. Garreaud RD, Lopez P, Minvielles M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–236CrossRefGoogle Scholar
  22. Glasser NF, Harrison S, Winchester V, Aniya M (2004) Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob Planet Chang 43:79–101CrossRefGoogle Scholar
  23. Glasser NF, Jansson KN, Goodfellow BW, De Angelis H, Rodnight H, Rood DH (2011) Cosmogenic nuclide exposure ages for marains in the Lago San Martín Valley, Argentina. Quat Res 75:636–646CrossRefGoogle Scholar
  24. Grimm E (2004) Tilia and TGView 2.0.2. Software. Illinois State Museum. Research and Collection Center. SpringfieldGoogle Scholar
  25. Guerrido C, Fernandez D (2007) Flora Patagonia: Southern Forest/Bosques Australes. Fantástico Sur, Punta ArenasGoogle Scholar
  26. Hein AS, Hulton NRJ, Dunai TJ, Sugden DE, Kaplan MR, Xu S (2010) The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat Sci Rev 29:1,212–1,227Google Scholar
  27. Heiri O, Lotter A, Lenmcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  28. Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219CrossRefGoogle Scholar
  29. Hoffman JAJ (1975) Atlas climatológico de América del Sur. OMM–WMO–UNESCO, HungríaGoogle Scholar
  30. Huber UM, Markgraf V (2003) Holocene fire frequency and climate change at Río Rubens Bog, southern Patagonia. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 357–380CrossRefGoogle Scholar
  31. Jacobson GL Jr, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96CrossRefGoogle Scholar
  32. Kilian R, Lamy F (2012) A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quat Sci Rev 53:1–23CrossRefGoogle Scholar
  33. Mancini MV (2009) Holocene vegetation and climate changes from a peat pollen record of the forest-steppe ecotone, Southwest of Patagonia (Argentina). Quat Sci Rev 28:1,490–1,497Google Scholar
  34. Mancini MV, De Porras ME, Bamonte FP (2012) Southernmost South America Steppes: vegetation and its modern pollen-assemblages representation. In: Germanno DM (ed) Steppe ecosystems: dynamics, land use and conservation. Nova Science Pub Inc, New York, pp 141–156Google Scholar
  35. Marcos MA, Mancini MV (2012) Modern pollen and vegetation relationships in Northeastern Patagonia (Golfo San Matías, Río Negro). Rev Palaeobot Palynol 171:19–26CrossRefGoogle Scholar
  36. Markgraf V, Huber UM (2010) Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 297:351–366CrossRefGoogle Scholar
  37. Markgraf V, Bradbury P, Schwalb A, Burns S, Stern Ch, Ariztegui D, Gilli A, Anselmetti F, Stine S, Maidana N (2003) Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. Holocene 13:581–591CrossRefGoogle Scholar
  38. Masiokas MH, Luckman BH, Villalba R, Delgado S, Skavarca P, Ripalta A (2009) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:351–362CrossRefGoogle Scholar
  39. Mayr C, Wille M, Haberzettl T et al (2007) Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quat Sci Rev 26:579–584CrossRefGoogle Scholar
  40. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere Calibration 0–1000 cal bp. Radiocarbon 46:1,087–1,092Google Scholar
  41. Mercer JH (1984) Late Caenozoic glacial variations in South America south of the equator. In: Vogel JC (ed) Late Caenozoic palaeoclimates of the southern hemisphere. Balkena, Rotterdam, pp 45–58Google Scholar
  42. Mercer JH, Ager TA (1983) Glacial and floral changes in Southern Argentina since 14,000 years Ago. Nat Geogr Soc Res 15:457–477Google Scholar
  43. Moreno PI, François JP, Villa-Martínez RP, Moy CM (2009) Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat Sci Rev 28:25–38CrossRefGoogle Scholar
  44. Moreno PI, Villa-Martínez RP, Cárdenas ML, Sagrado EA (2012) Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52°S). Quat Sci Rev 41:1–21CrossRefGoogle Scholar
  45. Movia C, Soriano A, León R (1987) La vegetación de la Cuenca del Río Santa Cruz (provincia de Santa Cruz, Argentina). Darwiniana 28:9–78Google Scholar
  46. Moy CM, Moreno PI, Dunbar RB, Kaplan MR, Francois JP, Villalba R, Haberzettl T (2009) Climate change in Southern South America during the Last Two Millennia. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Dev Palaeoenviron Res 14:353–393Google Scholar
  47. Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Esper J, Lopez L, Wanner H (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett 37(L14):708Google Scholar
  48. Paruelo JM, Beltrán A, Jobbágy E, Sala O, Golluscio R (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101Google Scholar
  49. Pereyra FX, Fauqué L, González Díaz EF (2002) Geomorfología. In: Haller MJ (ed) Geología y Recursos Naturales de Santa Cruz. Sociedad Geológica Argentina, El Calafate, pp 325–352Google Scholar
  50. Porter SC (2000) Onset of Neoglaciation in the Southern Hemisphere. J Quat Sci 15:395–408CrossRefGoogle Scholar
  51. Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Sciences, Elsevier, Amsterdam, pp 151–204CrossRefGoogle Scholar
  52. Rabassa J, Clapperton CH (1990) Quaternary glaciations of the Southern Andes. Quat Sci Rev 9:153–174CrossRefGoogle Scholar
  53. Reimer PJ, Baillie MGL, Bard E et al. (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr bp. Radiocarbon 46:1,029–1,058Google Scholar
  54. Schäbitz F, Wille M, Francois JP et al (2013) Reconstruction of palaeoprecipitation based on pollen transfer functions—the record of the last 16 ja from Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:175–190CrossRefGoogle Scholar
  55. Sottile GD, Bamonte FP, Mancini MV, Bianchi MM (2012) Insights into Holocene vegetation and climate changes at the Southeastern side of the Andes: Nothofagus Forest and Patagonian steppe fire records. Holocene 22:1,309–1,322Google Scholar
  56. Strelin JA, Denton GH, Vandergoes MJ, Ninnemann US, Putnam AE (2011) Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quat Sci Rev 30:2,551–2,569Google Scholar
  57. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  58. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0.2.
  59. Tonello MS, Mancini MV, Seppä H (2009) Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quat Res 72:410–420CrossRefGoogle Scholar
  60. Villa-Martínez RP, Moreno PI (2007) Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quat Res 68:400–409CrossRefGoogle Scholar
  61. Warren CR, Sudgen DE (1993) The Patagonian icefield: a glaciological review. Arct Alp Res 25:316–331CrossRefGoogle Scholar
  62. Wenzens G (1999) Fluctuations of oulet and valley glaciers in the Southern Andes (Argentina) during the past 13,000 years. Quat Res 51:238–247CrossRefGoogle Scholar
  63. Wille M, Schäbitz F (2009) Late-glacial and Holocene climate dynamics at the steppe/forest ecotone in southernmost Patagonia, Argentina: the pollen record from a fen near Brazo Sur, Lago Argentino. Veget Hist Archaeobot 18:225–234CrossRefGoogle Scholar
  64. Wille M, Maidana NI, Schäbitz F et al (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Florencia Paula Bamonte
    • 1
    • 3
    Email author
  • María Virginia Mancini
    • 1
  • Gonzalo David Sottile
    • 1
    • 3
  • María Alejandra Marcos
    • 1
    • 3
  • Claudia Gogorza
    • 2
    • 3
  1. 1.Laboratorio de Paleoecología y Palinología, Departamento de Biología, IIMYC – CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN-CONICET)TandilArgentina
  3. 3.CONICETBuenos AiresArgentina

Personalised recommendations