Vegetation History and Archaeobotany

, Volume 23, Issue 4, pp 355–365 | Cite as

Dendrochronological analyses of wood samples from a Late Bronze to early Iron Age site at Lake Luokesa, Lithuania

  • Niels Bleicher
Original Article


Tree rings of 184 archaeological wood samples from two Late Bronze to early Iron Age lake sites at Lake Luokesa (Luokesai ežeras), Lithuania, Moletai district, were analyzed. Despite severe difficulties with synchronization, Pinus (pine), Quercus (oak) and Alnus (alder) yielded some cross-datable series. The general picture is that the settlers chose small trees as timber, which they used in their natural round shape. The trees did not grow in homogeneous even-aged stands, but show very different ages and growth levels. Despite the generally low numbers of tree rings in the individual samples, the strong archaeological framework allowed cross-dating of some series and the building of chronologies for single structures. Based on these attempts, a 90 year long first floating chronology of the settlement structures is presented. Luokesa Site 2 (L2) was mainly built within the relative year 53. Luokesa Site 1 (L1) was certainly in use from the relative year 74 onwards. All fences at L1 show their main building activity in the relative year 81, four years after the main building activities in the village itself. It can be concluded that the settlement L1 was in use for at least 16 years. Because of the lack of a standard dendrochronological curve for the Baltic region, wiggle-matching was applied to obtain an absolute date for both settlements. The data clearly show that all samples relate to the Late Bronze–early Iron Age. The period where all wiggle matching results overlap is the period between 625 and 535 bc (the 2σ ranges are given). Based on the dating, duration and timber characteristics of the occupation, comparisons with Polish early Iron Age sites are made, which indicate a close resemblance in terms of wood use and settlement concept.


Dendrochronology Wood analysis Wiggle-matching Baltic region Iron Age Pile dwelling 



The author thanks Britta Pollmann for sampling wood on the excavation and documenting the location of the wood samples. This work was part of the project “Understanding wetland occupation in later prehistoric Europe” and funded by the Swiss National Foundation for Scientific research, Project No. K-13K1-117893/1. Special thanks to B. Jennings for many corrections.

Supplementary material

334_2014_463_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2395 kb)


  1. Billamboz A, Köninger J (2008) Dendroarchäologische Untersuchungen zur Besiedlungs- und Landschaftsentwicklung im Neolithikum des westlichen Bodenseegebietes. In: Dörfler W, Müller J (eds) Umwelt–Wirtschaft–Siedlungen im dritten vorchristlichen Jahrtausend Mitteleuropas und Südskandinaviens. Wachholtz, Neumünster, pp 317–334Google Scholar
  2. Bleicher N (2009a) Altes Holz in neuem Licht. Archäologische und dendrochronologische Untersuchungen an spätneolithischen Feuchtbodensiedlungen in Oberschwaben. In: Regierungspräsidium Stuttgart, Landesamt für Denkmalpflege (eds) Berichte zu Ufer- und Moorsiedlungen V. Materialh Archäol Bad-Württ 83. Landesamt für Denkmalpflege, StuttgartGoogle Scholar
  3. Bleicher N (2009b) Stabilität und Dynamik von Dörfern und Siedlungsgemeinschaften aus dendroarchäologischer Sicht. Jb Archäol Schweiz 92:239–246Google Scholar
  4. Bleicher N (2013) Four levels of tree-ring patterns. An archaeological approach to dendroecology. Veget Hist Archaeobot 2013. doi: 10.1007/s00334-013-0410-6
  5. Bleicher N, Herbig C (2010) Der Federsee: Landschaft und Dynamik im Neolithikum. In: Matuschik I, Strahm C, Eberschweiler B, Fingerlin G, Hafner A, Kinsky M, Mainberger M, Schöbel G (eds) Vernetzungen. Aspekte Siedlungsarchäologischer Forschung, Janus, pp 95–112Google Scholar
  6. Briffa K, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis L (eds) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152Google Scholar
  7. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  8. Bronk Ramsey C, Van der Plicht J, Weninger B (2001) ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43:381–389Google Scholar
  9. Dujesiefken D, Liese W (1986) Vorkommen und Entstehung des Mondrings (Quercus spp.). Forstwiss Centralbl 105:137–155CrossRefGoogle Scholar
  10. Gackowski J (2000) On the dating and cultural aspects of the West Baltic barrow culture lake dwellings. In: Kola A (ed) Studies in the lake dwellings of the West Baltic barrow culture. Torun University Press, Torun, pp 9–63Google Scholar
  11. Girininkas A (2010) The Žemaitiške 2 pile dwelling settlement. Archaeologia Baltica 14:120–135Google Scholar
  12. Guobytė R (1995) Geological mapping of the Molėtai area, sc. 1:50,000. Geological report no. 4378. Vilnius, Lietuvos Geologijos Tarnybos (LGT)Google Scholar
  13. Guobytė R, Satkūnas J (2011) Pleistocene glaciations in Lithuania. In: Ehlers J, Gibbard PL, Hughes PD (eds) Developments in quaternary science: quaternary glaciations: extent and chronology, vol 15., A closer lookElsevier, Amsterdam, pp 231–246CrossRefGoogle Scholar
  14. Heitz-Weniger (2014) Palynological investigations at the Late Bronze–Early Iron Age lakeshore settlement of Luokesa 1 (Moletai District, Lithuania): a contribution to the Middle-Late Holocene vegetation history of the south-eastern Baltic regions (this volume). doi: 10.1007/s00334-014-0456-0
  15. Herbig C (2009) Archäobotanische Untersuchungen in neolithischen Feuchtbodensiedlungen am westlichen Bodensee und in Oberschwaben. (Frankfurter Archäologische Schriften 10) Habelt, BonnGoogle Scholar
  16. Hollstein E (1980) Mitteleuropäische Eichenchronologie (Trierer Grabungen und Forschungen 11). Zabern, MainzGoogle Scholar
  17. Ismail Meyer (2014) The potential of micromorphology for interpreting sedimentation processes in wetland sites: a case study of a Late Bronze–Early Iron Age lakeshore settlement at Lake Luokesa (Lithuania) (this volume). doi: 10.1007/s00334-014-0459-x
  18. Krąpiec M (1999) Occurrence of moon rings in oak from Poland during the Holocene. In: Wimmer R, Vetter RE (eds) Tree-ring analysis: biological, methodological, and environmental aspects. CABI Publishing, Oxon, pp 193–203Google Scholar
  19. Lewis H (2007) Pile dwellings, drainage and deposition: preliminary soil micromorphology study of cultural deposits from underwater sites at Lake Luokesa, Moletai Region, Lithuania. J Wetland Archaeol 7:33–50CrossRefGoogle Scholar
  20. Menotti F, Baubonis Z, Brazaitis D, Higham T, Kvedaravičius M, Lewis H, Motuzaite G, Pranckėnaitė E (2005) The first lake-dwellers of Lithuania: Late Bronze Age pile settlements on Lake Luokesa. Oxford J Archaeol 24:381–403CrossRefGoogle Scholar
  21. Motuzaite Matuzevičiūtė G (2008) Living above the water or on dry land? The application of soil analysis methods to investigate a submerged Bronze Age to Early Iron Age lake dwelling site in eastern Lithuania. Archaeologia Baltica 9:33–46Google Scholar
  22. Pollmann B (2014) Environment and agriculture of the transitional period from Late Bronze to early Iron Age in the eastern Baltic: an archaeobotanical case study of the lakeshore settlement Luokesa 1 (Lithuania). Veget Hist Archaeobot 23 (this volume)Google Scholar
  23. Pranckėnaitė E (2014) Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: the archaeological context of the Luokesa lake settlements. Veget Hist Archaeobot 23 (this volume)Google Scholar
  24. Pydyn A, Gackowski J (2011) Wetland archaeology of the Late Bronze Age and the Early Iron Age settlements from Poland. In: Pranckėnitė E (ed) Wetland settlements of the Baltic. A prehistoric perspective. Centre of Underwater Archaeology, Vilnius, pp 133–150Google Scholar
  25. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 51:1,111–1,150Google Scholar
  26. Schweingruber FH (1988) Tree rings: basics and applications of dendrochronology. Reidel, DordrechtCrossRefGoogle Scholar
  27. Schweingruber FH (2001) Dendroökologische Holzanatomie: Anatomische Grundlagen der Dendrochronologie. Haupt, BernGoogle Scholar
  28. Schweingruber FH (2011) Anatomie europäischer Hölzer: anatomy of European woods. Haupt, BernGoogle Scholar
  29. Tegel W, Elburg R, Hakelberg D, Stäubl H, Büntgen U (2012) Early neolithic water wells reveal the world’s oldest wood architecture. PLoS ONE 7:e51374. doi: 10.1371/journal.pone.0051374 CrossRefGoogle Scholar
  30. Wacker L, Nemec M, Friedrich M, Kromer B, Hajdas I, Synal HA (2009) Is it time for a new calibration curve? Partial re-evaluation of the Intcal09 radiocarbon calibration curve. Ion beam physics, ETH Zurich. Ann Rep 2009:48Google Scholar
  31. Ważny T (1994) Dendrochronology of Biskupin: absolute dating of the early Iron-age settlement. Bull Polish Acad Sci Biol Sci 42:283–289Google Scholar
  32. Ważny T (2009) Dendrochronologia drewna biskupińskiego, czyli co drzewa zapisały w przyrostach rocznych. In: Babiński L (ed) Stan I perspektywy zachowania drewna biskupińskiego. Biskupin, p 63–76Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory for DendrochronologyOffice for Urbanism, City of ZürichZürichSwitzerland

Personalised recommendations