Vegetation History and Archaeobotany

, Volume 23, Issue 4, pp 367–382 | Cite as

The potential of micromorphology for interpreting sedimentation processes in wetland sites: a case study of a Late Bronze–early Iron Age lakeshore settlement at Lake Luokesa (Lithuania)

Original Article

Abstract

Lake Luokesa lies in the eastern part of Lithuania and is part of a region of lakes formed by the Scandinavian ice-sheet and its melt waters during the last glaciation. During the Late Bronze–Early Iron Age transition, between 625 and 535 cal BC, a lakeside settlement with an onshore palisade was built on the platform of a carbonate bank. A total of five profiles, each comprising an organic occupation layer and lake sediments at its bottom and top, were examined micromorphologically. In this paper, natural and anthropogenic processes that led to the formation of the individual layers are presented; their possible origins are reconstructed and then discussed and compared to lakeside settlements of the circum-alpine region. This includes the emergence of lake marl, accumulation of organic layers in the settlement area as well as their decomposition, erosion and trampling features and inwash of sand through runoff from the hinterland. Due to the accumulation of the up to 60 cm thick culture layers in waterlogged environments, indications of seasonal deposition cycles could be identified.

Keywords

Site formation processes Seasonality Human impact Trampling Erosion Geoarchaeology 

Supplementary material

334_2014_459_MOESM1_ESM.jpg (1.7 mb)
Supplementary material 1 (JPG 1730 kb)
334_2014_459_MOESM2_ESM.jpg (1.8 mb)
Supplementary material 2 (JPG 1829 kb)
334_2014_459_MOESM3_ESM.xlsx (79 kb)
Supplementary material 3 (XLSX 80 kb)

References

  1. Akeret Ö, Rentzel P (2001) Micromorphology and plant macrofossil analysis of cattle dung from the Neolithic lake shore settlement of Arbon Bleiche 3. Geoarchaeology 16:687–700CrossRefGoogle Scholar
  2. Babel U (1975) Micromorphology of soil organic matter. In: Gieseking JE (ed) Soil components, vol 1. Springer, Berlin, pp 369–473CrossRefGoogle Scholar
  3. Babel U (1985) Basic organic components. In: Bullock P, Fedoroff N, Jongerius A, Stoops G, Tursina T, Babel U (eds) Handbook for soil thin section description. Waine Research Publications, Wolverhampton, pp 50–73Google Scholar
  4. Baker C, Thompson JR, Simpson M (2009) Hydrological dynamics I: surface waters, flood and sediment dynamics. In: Maltby E, Barker T (eds) The wetlands handbook. Wiley-Blackwell, Cichester, pp 120–168CrossRefGoogle Scholar
  5. Beckmann T (1997) Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen. In: Stahr K (ed) Mikromorphologische Methoden in der Bodenkunde. Hohenheimer Bodenkundliche Hefte 40, Hohenheim, pp 89–103Google Scholar
  6. Bitinas A, Guobytė R, Grigienė A, Stancikaite M (1995) Report of the complex geological mapping, VilniusGoogle Scholar
  7. Bleicher N (2014) Dendrochronological analyses of wood samples from a Late Bronze–early Iron Age wetland site at Lake Luokesa in Lithuania. Veget Hist Archaeobot 23. doi:10.1007/s00334-014-0463-1
  8. Brochier JL (1983) L’habitat lacustre préhistorique: problèmes géologiques. Archiv des Sciences de Genève 36:247–260Google Scholar
  9. Bullock P, Fedoroff N, Jongerius A, Stoops G, Tursina T, Babel U (1985) Handbook for soil thin section description. Waine Research Publication, WolverhamptonGoogle Scholar
  10. Charman DJ (2009) Peat and Peatlands. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier Academic Press, Amsterdam, pp 507–610Google Scholar
  11. Corfield M (2008) Wetland Science. In: Lillie M, Ellis S (eds) Wetland archaeology and environments: regional issues, global perspectives. Oxbow Books, Oxford, pp 143–155Google Scholar
  12. Courty M-A, Goldberg P, Macphail R (1989) Soils and micromorphology in archaeology. Cambridge Manuals in Archaeology. Cambridge University Press, CambridgeGoogle Scholar
  13. Cutler AH (1995) Taphonomic implications of shell surface textures in Bahia la Choya, northern Gulf of California. Palaeogeogr Palaeoclimatol Palaeoecol 114:219–240CrossRefGoogle Scholar
  14. Digerfeldt G, Sandgren P, Olsson S (2007) Reconstruction of Holocene lake-level changes in Lake Xinias, central Greece. Holocene 17:361–367CrossRefGoogle Scholar
  15. Fitzpatrick EA (1993) Soil microscopy and micromorphology. Wiley, ChichesterGoogle Scholar
  16. French CAI (2003) Geoarchaeology in action: studies in soil micromorphology and landscape evolution. Routledge, LondonGoogle Scholar
  17. Freytet P, Verrecchia EP (2002) Lacustrine and palustrine carbonate petrography: an overview. J Paleolimnol 27:221–237CrossRefGoogle Scholar
  18. Gaigalas A, Dvareckas V (2002) The evolution of river valleys in Lithuania from deglaciation to recent changes and data from the sediment infill of oxbow lakes. Neth J Geosci/Geologie en Mijnbouw 81:407–416Google Scholar
  19. Gastaldo RA, Demko TM (2011) The relationship between continental landscape evolution and the plant-fossil record: Long term hydrologic controls on preservation. In: Allison PA, Bottjer DJ (eds) Taphonomy: process and bias through time. Springer, Dordrecht, pp 249–285Google Scholar
  20. Goldberg P, Macphail RI (2006) Practical and theoretical geoarchaeology. Blackwell, OxfordGoogle Scholar
  21. Guobytė R, Satkūnas J (2011) Pleistocene glaciations in Lithuania. In: Ehlers J, Gibbard PL, Hughes PD (eds) Developments in quaternary science: quaternary glaciations—extent and chronology, a closer look, vol 15. Elsevier, Amsterdam, pp 231–246Google Scholar
  22. Heitz-Weniger A (2014) Palynological investigations at the Late Bronze–early Iron Age lakeshore settlement of Luokesa 1 (Moletai District, Lithuania): a contribution to the Middle-Late Holocene vegetation history of the south-eastern Baltic regions. Veget Hist Archaeobot 23. doi:10.1007/s00334-014-0456-0
  23. Holden J, Burt TP (2003) Hydrological studies on blanket peat: the significance of the acrotelm–catotelm model. J Ecol 91:86–102CrossRefGoogle Scholar
  24. Huber R, Ismail-Meyer K (2012) Cham-Eslen (Kanton Zug, Schweiz): ein jungneolithisches Haus mit (fast) allem Drum und Dran? Taphonomische Aspekte einer Seeufersiedlung. In: Link T, Schimmelpfennig D (eds) Taphonomische Forschungen (nicht nur) zum Neolithikum. Fokus Jungsteinzeit 3. Welt und Erde Verlag, Kerpen-Loogh, pp 83–106Google Scholar
  25. Ismail-Meyer K (2010) Mikromorphologische Analyse zweier Profilkolonnen aus den Tauchsondagen von 1999 und 2007. In: Altorfer K (ed) Die prähistorischen Feuchtbodensiedlungen am Südrand des Pfäffikersees. Eine archäologische Bestandesaufnahme der Stationen Wetzikon-Robenhausen und Wetzikon-Himmerich. Monogr Kantonsarchäol Zürich 41, Zürich, pp 86–96Google Scholar
  26. Ismail-Meyer K, Rentzel P (2004) Mikromorphologische Untersuchung der Schichtabfolge. In: Jacomet S, Leuzinger U, Schibler J (eds) Die jungsteinzeitliche Seeufersiedlung Arbon—Bleiche 3: Umwelt und Wirtschaft. Archäologie im Thurgau 12, Huber & Co AG, Frauenfeld: Departement für Erziehung und Kultur des Kantons Thurgau, pp 66–80Google Scholar
  27. Ismail-Meyer K, Rentzel P (in press) Paludal setting (wetland archaeology). In: Gilbert AS (ed) Encyclopedia of geoarchaeology. Encyclopedia of earth sciences series. Springer, New YorkGoogle Scholar
  28. Ismail-Meyer K, Rentzel P, Wiemann P (2013) Neolithic lake-shore settlements in Switzerland: new insights on site formation processes from micromorphology. Geoarchaeology 28:317–339CrossRefGoogle Scholar
  29. Jacomet S, Leuzinger U, Schibler J (2004) Die jungsteinzeitliche Seeufersiedlung Arbon—Bleiche 3: Umwelt und Wirtschaft. Departement für Erziehung und Kultur des Kantons Thurgau, Archäologie im Thurgau 12, Huber & Co AG, FrauenfeldGoogle Scholar
  30. Kabailienė M (2006) Main stages of natural environmental changes in Lithuania during the Late Glacial and Holocene. Geologija 55:37–47Google Scholar
  31. Karkanas P, Goldberg P (2010) Phosphatic Features. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 521–541CrossRefGoogle Scholar
  32. Karkanas P, Pavlopoulos K, Kouli K, Ntinou M, Tsartsidou G, Facorellis Y, Tsourou T (2011) Palaeoenvironments and site formation processes at the Neolithic lakeside settlement of Dispilio, Kastoria, Northern Greece. Geoarchaeology 26:83–117CrossRefGoogle Scholar
  33. Kenward H, Hall A (2000) Decay of delicate organic remains in shallow urban deposits: are we at a watershed? Antiquity 74:519–525Google Scholar
  34. Krier V (1997) Premières observations micromorphologiques sur la coupe de Chalain 3. In: Pétrequin P (ed) Chalain station 3, 3200–2900 av. J.-C., vol 1. Les sites littoraux néolithiques de Clairvaux-les-Lacs et de Chalain (Jura) 3. Maison des sciences de l’homme, Paris, pp 95–99Google Scholar
  35. Lewis H (2007) Pile dwellings, drainage and deposition: preliminary soil micromorphology study of cultural deposits from underwater sites at Lake Luokesas, Moletai Region, Lithuania. J Wetland Archaeol 7:33–50CrossRefGoogle Scholar
  36. Lindsay R (2010) Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. http://www.rspb.org.uk/Images/Peatbogs_and_carbon_tcm9-255200.pdf; https://portals.iucn.org/2012forum/sites/2012forum/files/peatbogs-carbon-critical-synthesis.pdf
  37. Lyman RL (1994) Vertebrate taphonomy. Cambridge Manuals in Archaeology. Cambridge University Press, CambridgeGoogle Scholar
  38. Macphail RI, Allen MJ, Crowther J, Cruise GM, Whittaker JE (2010) Marine inundation: effects on archaeological features, materials, sediments and soils. Quat Int 214:44–55CrossRefGoogle Scholar
  39. Magny M (1978) La dynamique des depots lacustres et les stations littorales du Grand Lac de Clairvaux (Jura). CNRS, ParisGoogle Scholar
  40. Magny M (1992) Sédimentation et dynamique de comblement dans les lacs du Jura au cours des 15 dernières millenaires. Rev d’Archéometrie 16:27–49Google Scholar
  41. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  42. Menotti F (2012) Wetland archaeology and beyond: theory and practice. Oxford University Press, OxfordCrossRefGoogle Scholar
  43. Menotti F, Baubonis Z, Brazaitis B, Higham T, Kvedaravicius M, Lewis H, Motuzaite G, Pranckenaite E (2005) The first lake-dwellers of Lithuania: Late Bronze Age pile settlements on Lake Luokesas. Oxford J Archaeol 24:381–403CrossRefGoogle Scholar
  44. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, HobokenGoogle Scholar
  45. Monnier J-L, Pétrequin P, Richard A, Pétrequin A-M, Gentizon A-L (1991) Construire une maison 3000 ans avant J.C.: Le lac de Chalain au Néolithique, vol 1. Archéologie de Franche-Comté, Edition Errance, ParisGoogle Scholar
  46. Motuzaite Matuzevičiūtė G (2008) Living above the water or on dry land? The application of soil analysis methods to investigate a submerged bronze age to early iron age lake dwelling site in eastern Lithuania. In: Girininkas A (ed) Archaeologia Baltica, vol 9. Klaipėda University Press, Klaipėda, pp 33–46Google Scholar
  47. Novik A, Punning J-M, Zernitskayac V (2010) The development of Belarusian lakes during the Late Glacial and Holocene. Est J Earth Sci 59:63–79CrossRefGoogle Scholar
  48. Ostendorp W (1990) Zur Stratigraphie und Sediment-Petrographie der Station Allensbach—Strandbad: Profilsäule E6. Siedlungsarchäologie im Alpenvorland II, Forsch Ber Vor- Frühgesch Bad-Württ 37:75–89Google Scholar
  49. Ostendorp W (1996) Paläolimnologische Untersuchungen im Bereich der spätbronzezeitlichen Station Hagnau-Burg am Bodensee-Obersee: Profiläule Ha 91–E1. Siedlungsarchäologie im Alpenvorland IV, Forsch Ber Vor- Frühgesch Bad-Württ 47:223–238Google Scholar
  50. Pawluk S (1987) Faunal micromorphological features in moder humus of some western canadian soils. Geoderma 40:3–16CrossRefGoogle Scholar
  51. Platt NH, Wright VP (1991) Lacustrine carbonate: facies models, facies distribution and hydrocarbon aspects. Int Assoc Sedimentol 12:57–74Google Scholar
  52. Pollmann B (2014a) Environment and agriculture of the transitional period from Late Bronze to early Iron Age in the Eastern Baltic: An archaeobotanical case study of the lakeshore settlement Luokesa 1 (Lithuania). Veget Hist Archaeobot 23. doi:10.1007/s00334-014-0464-0
  53. Pollmann B (2014b) Geschichte einer Feuchbodensiedlung um 600 v. Chr. am See Luokesa (Litauen): Rekonstruktion von Schichtgenese, Umwelt und Ernährung anhand archäobotanischer Analysen und taphonomischer Untersuchungen biologischer Makroreste. PhD thesis, University of Basel, BaselGoogle Scholar
  54. Pranckėnaitė E (2014) Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: the archaeological context of the Luokesa lake settlements. Veget Hist Archaeobot 23. doi:10.1007/s00334-014-0462-2
  55. Punning J-M, Koff T, Kadastik E, Mikomägi A (2005) Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. J Paleolimnol 34:377–390CrossRefGoogle Scholar
  56. Schiegl S, Goldberg P, Bar-Yosef O, Weiner S (1996) Ash deposits in Hayonim and Kebara caves, Israel: macroscopic, microscopic and mineralogical observations, and their archaeological implications. J Archaeol Sci 23:763–781CrossRefGoogle Scholar
  57. Sillasoo Ü, Poska A, Seppä H, Blaauw M, Chambers F (2009) Linking past cultural developments to palaeoenvironmental changes in Estonia. Veget Hist Archaeobot 18:315–327CrossRefGoogle Scholar
  58. Stančikaitė M, Kabailienė M, Ostrauskas T, Guobytė R (2002) Environment and man around Lakes Dūba and Pelesa, SE Lithuania, during the Late Glacial and Holocene. Geol Quat 46:391–409Google Scholar
  59. Stančikaitė M, Kisielienė D, Strimaitienė A (2004) Vegetation response to the climatic and human impact changes during the post Glacial: case study of the marginal area of Baltija Upland, NE Lithuania. Baltica 17:17–33Google Scholar
  60. Stolt MH, Lindbo DL (2010) Soil organic matter. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 368–396Google Scholar
  61. Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, MadisonGoogle Scholar
  62. Stoops G, Marcelino V, Mees F (2010) Interpretation of micromorphological features of soils and regoliths. Elsevier, AmsterdamGoogle Scholar
  63. Takeda H (1988) A rapid method for preparing thin sections of soil organic layers. Geoderma 42:159–164CrossRefGoogle Scholar
  64. Turnbaugh WA (1978) Floods and archaeology. Am Antiq 43:593–607CrossRefGoogle Scholar
  65. van der Valk AG (2006) The biology of freshwater wetlands. The biology of habitats series. Oxford University Press, OxfordGoogle Scholar
  66. Wallace G (1999) A microscopic view of Neolithic lakeside settlements on the northern rim of the European alps. Unpublished Thesis, University of CambridgeGoogle Scholar
  67. Wallace G (2003) Using narrative to contextualise micromorphological data from Neolithic wetland houses. J Wetl Archaeol 3:75–92CrossRefGoogle Scholar
  68. Werner U, Reitner J (1989) Lebend- und Totengemeinschaften von Süsswassermollusken des Tegeler Sees - ein Beitrag zur Beurteilung seines ökologischen Zustandes. Berliner geowiss Abh, Reihe A 106:517–539Google Scholar
  69. Zolitschka B, Behre K-E, Schneider J (2003) Human and climatic impact on the environment as derived from colluvial, flucial and lacustrine archives—examples from the Bronze Age to the Migration period, Germany. Quat Sci Rev 22:81–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Environmental SciencesIntegrative Prehistory and Archaeological Science (IPAS), University of BaselBaselSwitzerland

Personalised recommendations