Vegetation History and Archaeobotany

, Volume 23, Issue 6, pp 665–681 | Cite as

18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal

  • Frank H. Neumann
  • Gregory A. Botha
  • Louis Scott
Original Article


A palynological and sedimentological record from the Mahwaqa Mountain in KwaZulu-Natal, South Africa, provides evidence of the vegetation dynamics in this part of the Grassland Biome during the last c. 18,000 years. The wetland is located at 1,850 m on an isolated outlier of the Ukhahlamba–Drakensberg Mountain range on an ecotone along a climatic gradient. The vegetation responded to humidity and temperature changes during the late Pleistocene and Holocene. The period c. 18,000–13,500 cal. bp is characterized by high Ericaceae and Restionaceae percentages and decreasing values of charred particles, indicating cool conditions. Around 13,500–8,500 cal. bp, Ericaceae were gradually replaced by Poaceae, signaling climate warming. Growing environmental wetness during the same time period is inferred from Phragmites-type and Cliffortia pollen percentages. Since c. 8,500 cal. bp, Cliffortia, Restionaceae, and Phragmites-type percentages have maintained low levels. Ericaceae were almost completely replaced by grasses and Asteraceae by c. 7,500 cal. bp. All indications are that warm and fluctuating moisture conditions followed until 4,600 cal. bp but they became driest between c. 4,600 and 3,500 cal. bp, when high Asteraceae, Pentzia-type and Scabiosa percentages were prominent. From c. 3,500–800 cal. bp, the increase of sedges, Aponogeton and grass pollen (including Phragmites-type) at the expense of Asteraceae pollen suggests the return of slightly more humid conditions. Since c. 1,000 cal. bp an increase of water demanding Podocarpus and Cliffortia occurred. Pine pollen indicates the recent introduction of alien plants in the 19th and 20th centuries.


Grassland Biome Palaeoecology Late Quaternary Palynology Drakensberg South Africa 



Thanks are due to Council for Geoscience and PAST (Palaeontological Scientific Trust) and the Scatterlings of Africa Programme. This work is based on the research supported by the National Research Foundation. Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. A. Niehus processed the samples. We are thankful to W. Swart, S. Grab, M. Krings, and L. Shumilovskikh for fruitful discussions.


  1. Alm E (2010) Mahwaqa—the frowning mountain. Plant Life 39(40):38–44Google Scholar
  2. Bard E, Rostek F, Sonzogni C (1997) Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385:707–710CrossRefGoogle Scholar
  3. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  4. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  5. Boelhouwers JC, Sumner P (2003) The palaeoenvironmental significance of southern African blockfields and blockstreams. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost. Swets and Zeitlinger, Lisse, pp 73–78Google Scholar
  6. Boelhouwers JC, Holness S, Meiklejohn I, Sumner P (2002) Observations on a blockstream in the vicinity of Sani Pass, Lesotho Highlands, southern Africa. Permafr Periglac 13:251–257CrossRefGoogle Scholar
  7. Bond WJ, Midgley GF, Woodward FI (2003) What controls South African vegetation-climate or fire? S Afr J Bot 69:79–91Google Scholar
  8. Bonnefille R, Riollet G (1980) Pollens des Savanes ďAfrique Orientale. Editions du Centre National de la Recherche Scientifique, ParisGoogle Scholar
  9. Botha GA (1996) The geology and palaeopedology of late Quaternary colluvial sediments in northern KwaZulu-Natal, South Africa. Memoir of the Geological Survey of South Africa number 83. Council for Geoscience, PretoriaGoogle Scholar
  10. Botha GA, Scott L, Vogel JC, von Brunn V (1992) Palaeosols and palaeoenvironments during the ‘Late Pleistocene Hypothermal’ in northern Natal. S Afr J Sci 88:508–512Google Scholar
  11. Brand RF, Du Preez PJ, Brown LR (2008) A floristic description of the Afromontane fynbos communities on Platberg, Eastern Free State, South Africa. KOEDOE 50:202–213CrossRefGoogle Scholar
  12. Bussmann RW (2006) Vegetation zonation and nomenclature of African mountains—an overview. Lyonia 11:41–66Google Scholar
  13. Carbutt C, Edwards TJ (2001) Cape elements on high-altitude corridors and edaphic islands: historical aspects and preliminary phytogeography. Syst Geogr Plants 71:1,033–1,061CrossRefGoogle Scholar
  14. Carbutt C, Edwards TJ (2004) The flora of the Drakensberg Alpine Centre. Edinb J Bot 60:581–607Google Scholar
  15. Carbutt C, Edwards TJ (2006) The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S Afr J Bot 72:105–132CrossRefGoogle Scholar
  16. Carbutt C, Tau M, Stephens A, Bescott B (2011) The conservation status of temperate grasslands in southern Africa. GRASSROOTS 11:17–23Google Scholar
  17. Carriόn JS, Navarro C (2002) Cryptogam spores and other non-pollen microfossils as sources of palaeoecological information: case-studies from Spain. Ann Bot Fenn 39:1–14Google Scholar
  18. Carriόn JS, Scott L, Huffman T, Dreyer C (2000) Pollen analysis of Iron Age cow dung in southern Africa. Veget Hist Archaeobot 9:239–249CrossRefGoogle Scholar
  19. Clark JS (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  20. Clarke ML, Vogel JC, Botha GA, Wintle AG (2003) Late Quaternary hillslope evolution recorded in eastern South African colluvial badlands. Palaeogeogr Palaeoclimatol Palaeoecol 197:199–212CrossRefGoogle Scholar
  21. Conedera M, Tinner W, Neff C, Meurer M, Dickens A, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:435–456CrossRefGoogle Scholar
  22. Cowling RM, Richardson DM, Pierce SM (2003) Vegetation of Southern Africa. Cambridge University Press, CambridgeGoogle Scholar
  23. Daniau A-L, Sánchez Goni MF, Martinez P, Urrego DH, Bout-Roumazeilles V, Desprat S, Marlon RM (2013) Orbital-scale climate forcing of grassland burning in southern Africa. Proc Natl Acad Sci USA 110:5,069–5,073CrossRefGoogle Scholar
  24. Ellis MB, Ellis JP (1997) Microfungi on land plants. Richmond Publishing, LondonGoogle Scholar
  25. Ellis MB, Ellis JP (1998) Microfungi on miscellaneous substrates: an identification handbook. Richmond Publishing, LondonGoogle Scholar
  26. Elsik WC, Jarzen DM (2009) New species of the late Cenozoic fungal form-genus Mediaverrunites Jarzen & Elsik 1986 ex Nandi & Sinha 2007. Palynology 33:99–104Google Scholar
  27. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  28. Farrant JM, Lehner A, Cooper K, Wiswedel S (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57:65–79CrossRefGoogle Scholar
  29. Fey M (2010) Soils of South Africa—their distribution, properties, classification, use and environmental significance. Cambridge University Press, Cape TownGoogle Scholar
  30. Galley C, Bytebier B, Bellstedt DU, Linder HP (2007) The Cape element in the Afrotemperate flora: from Cape to Cairo? Proc R Soc B 274:535–543CrossRefGoogle Scholar
  31. Garcia D, Stchigel AM, Cano J, Guarro J, Hawksworth DL (2004) A synopsis and re-circumscription of Neurospora (syn. Gelasinospora) based on ultrastructural and 28S rDNA sequence data. Mycol Res 108:1,119–1,142CrossRefGoogle Scholar
  32. Grab SW (1999) Block and debris deposits in the high Drakensberg, Lesotho, southern Africa: implications for high altitude slope processes. Geogr Ann 81A:1–16CrossRefGoogle Scholar
  33. Grimm EC (1993) TILIA: a pollen program for analysis and display. Illinois State Museum, SpringfieldGoogle Scholar
  34. Grimm EC (2004) TGView. Version 2.0.2. Illinois State Museum Research Collection Center, SpringfieldGoogle Scholar
  35. Hammer Ø, Harper D (2006) Palaeontological data analysis. Blackwell, OxfordGoogle Scholar
  36. Hilliard OM (1987) Grasses, sedges, restiads and rushes of the Natal Drakensberg (Ukhahlamba), Series 2. University of Natal Press, PietermaritzburgGoogle Scholar
  37. Hilliard OM, Burtt BL (1987) The botany of the southern Natal Drakensberg. Annals of the Kirstenbosch Botanic Gardens number 15, Cape TownGoogle Scholar
  38. Huffman TN (2007a) The Early Iron Age at Broederstroom and around the ‘Cradle of Humankind’. In: Bonner P, Esterhuysen A, Jenkins T (eds) Search for origins: science, history, and South Africa’s ‘Cradle of Humankind’. Wits University Press, Johannesburg, pp 148–161Google Scholar
  39. Huffman TN (2007b) Handbook to the Iron Age: the archaeology of pre-colonial farming societies in southern Africa. University of KwaZulu-Natal Press, PietermaritzburgGoogle Scholar
  40. Killick DJB (1994) Drakensberg Alpine Region—Lesotho and South Africa. In: Davis SD, Heywood VH (eds) Centres of plant diversity. Oxford University Press, Oxford, pp 257–260Google Scholar
  41. Kołaczek P, Zubek S, Błaszokowski A, Mleczko P, Margielewski W (2013) Erosion of plant succession—how to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37CrossRefGoogle Scholar
  42. Krikun J, Bernier CC (1990) Morphology of microsclerotia of Verticillium dahlia in roots of gramineous plants. Can J Plant Pathol 12:439–441CrossRefGoogle Scholar
  43. Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J Atmos Sci 43:1,726–1,759CrossRefGoogle Scholar
  44. Lodder J (2012) The late Quaternary palaeo-environments of a subalpine wetland in Cathedral Peak, KwaZulu-Natal Drakensberg. Unpublished MSc Thesis, University of KwaZulu-NatalGoogle Scholar
  45. Lundqvist N (1972) Nordic Sordariaceae s. lat. Symbolae Botanicae Upsalienses 20, UppsalaGoogle Scholar
  46. MacPherson J (2009) Applying palaeoecology to conservation: a long-term perspective for informed management of a fynbos nature reserve. Plymouth Stud Sci 2:218–269Google Scholar
  47. Marker ME (1995) Late Quaternary environmental implications from sedimentary sequences at two high altitude Lesotho sites. S Afr J Sci 91:294–298Google Scholar
  48. Marker ME (1998) New radiocarbon dates from Lesotho. S Afr J Sci 94:239–240Google Scholar
  49. McCormack FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal. kyr BP. Radiocarbon 46:1,087–1,092Google Scholar
  50. Meter EB, Edwards TJ, Rennie MA, Granger JE (2002) A checklist of the plants of Mahwaqa Mountain, KwaZulu-Natal. BOTHALIA 32:101–115Google Scholar
  51. Midgley DC, Pitman WV, Middleton BJ (1994) Surface water resources of South Africa 1990; Volume V Appendices, Drainage Regions M, N, P, Q, R, S and T, Eastern Escarpment, Appendices. WRC Report number 298/5.1/94. Water Research Commission, PretoriaGoogle Scholar
  52. Milanesi C, Vignani R, Ciampolini F, Faleri C, Cattani L, Moroni A, Arrighi S, Scali M, Tiberi P, Sensi E, Wang W, Cresti M (2006) Ultrastructure and DNA sequence analysis of single Concentricystis cells from Alta Val Tiberina Holocene sediment. J Archaeol Sci 33:1,081–1,087CrossRefGoogle Scholar
  53. Mills SC, Grab SW, Rea BR, Carr SJ, Farrow A (2012) Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modeling. Quat Sci Rev 55:145–159CrossRefGoogle Scholar
  54. Montoya E, Rull V, van Geel B (2010) Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeogr Palaeoclimatol Palaeoecol 297:169–183CrossRefGoogle Scholar
  55. Mooney SD, Tinner W (2011) The analysis of charcoal in peat and organic sediments. Mires Peat 7:1–18Google Scholar
  56. Morrison K (1994) Monitoring regional fire history through size-specific analysis of microscopic charcoal: the last 600 years in South India. J Archaeol Sci 21:675–685CrossRefGoogle Scholar
  57. Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, PretoriaGoogle Scholar
  58. Mucina L, Hoare DB, Lötter MC, Du Preez PJ, Rutherford MC, Scott-Shaw CR, Bredenkamp GJ, Powrie LW, Scott L, Camp KGT, Cilliers SS, Bezuidenhout H, Mostert TH, Siebert SJ, Winter PJD, Burrows JE, Dobson L, Ward RA, Stalmans M, Oliver EGH, Siebert F, Schmidt E, Kobisi K, Kose L (2006) Grassland biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 348–437Google Scholar
  59. Neke KS, Du Plessis MA (2004) The threat of transformation: quantifying the vulnerability of grasslands in South Africa. Conserv Biol 18:466–477Google Scholar
  60. Neumann FH, Stager JC, Scott L, Venter HJT, Weyhenmeyer C (2008) Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Rev Palaeobot Palynol 152:113–128CrossRefGoogle Scholar
  61. Neumann F, Scott L, Bousman CB, Van As L (2010) A Holocene pollen sequence and vegetation changes at Lake Eteza, KwaZulu-Natal (South Africa). Rev Palaeobot Palynol 162:39–53CrossRefGoogle Scholar
  62. Norström E, Scott L, Partridge TC, Risberg J, Holmgren K (2009) Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16000 years with emphasis on the Pleistocene–Holocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 271:240–258CrossRefGoogle Scholar
  63. O’Connor TG, Bredenkamp GJ (2003) Grassland. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 215–257Google Scholar
  64. Partridge TC (1997) Cainozoic environmental change over Southern Africa, with special emphasis on the last 20000 years. Prog Phys Geogr 21:3–22CrossRefGoogle Scholar
  65. Partridge TC, Botha GA, Haddon IG (2006) Cenozoic deposits of the interior. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Council for Geoscience, Pretoria, pp 585–604Google Scholar
  66. Pooley E (2003) Mountain flowers a field guide to the flora of the Drakensberg and Lesotho. The Flora Publications Trust, DurbanGoogle Scholar
  67. Quick LJ, Chase BM, Meadows ME, Scott L, Reimer PJ (2011) A 19.5 kyr vegetation history from the central Cederberg Mountains, South Africa: palynological evidence from rock hyrax middens. Palaeogeogr Palaeoclimatol Palaeoecol 309:253–270CrossRefGoogle Scholar
  68. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) INTCAL 04 terrestrial radiocarbon age calibration, 0–26 KYR BP. Radiocarbon 46:1,029–1,058Google Scholar
  69. Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene Thermal Maximum. Quat Sci Rev 48:7–19CrossRefGoogle Scholar
  70. Retallack GJ (2001) Cenozoic expansion of grasslands and climatic cooling. J Geol 109:407–426CrossRefGoogle Scholar
  71. Rooseboom A, Verster E, Zietsman HL, Lotriet HH (1992) The development of the new sediment yield map of southern Africa. WRC Report 297/2/92. Water Research CommissionGoogle Scholar
  72. Rutherford MS, Westfall RH (1986) Biomes of southern Africa: an objective categorization. Mem Bot Surv S Afr 54:1–98Google Scholar
  73. Schlütz F, Shumilovskikh LS (2013) On the relation of Potamomyces armatisporus to the fossil form-type Mediaverrunites and its taxonomical and ecological implications. Fungal Ecol 6:309–315CrossRefGoogle Scholar
  74. Schulze RE (1982) Agrohydrology and climatology of Natal. Agricultural Catchments Research Unit Report number 14, PretoriaGoogle Scholar
  75. Scott L (1982a) A Late Quaternary pollen record from the Transvaal bushveld, South Africa. Quat Res 17:339–370CrossRefGoogle Scholar
  76. Scott L (1982b) Late Quaternary fossil pollen grains from the Transvaal, South Africa. Rev Palaeobot Palynol 36:241–278CrossRefGoogle Scholar
  77. Scott L (1987) Pollen analysis of hyena coprolites and sediments from Equus cave, Taung, southern Kalahari (S. Africa). Quat Res 28:144–156CrossRefGoogle Scholar
  78. Scott L (1989) Late Quaternary vegetation history and climatic change in the eastern O.F.S., South Africa. S Afr J Bot 55(1):107–116Google Scholar
  79. Scott L (1992) Environmental implications and origin of microscopic Pseudoschizaea Thiergart and Franz ex R. Potonié emend. in sediments. J Biogeogr 19:349–354CrossRefGoogle Scholar
  80. Scott L (1999) The vegetation history and climate in the savanna biome, South Africa, since 190,000 ka: a comparison of pollen data from the Tswaing crater (the Pretoria Saltpan) and Wonderkrater. Quat Int 57/58:215–223CrossRefGoogle Scholar
  81. Scott L (2002a) Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeogr Palaeoclimatol Palaeoecol 177:47–57CrossRefGoogle Scholar
  82. Scott L (2002b) Microscopic charcoal in sediments: Quaternary fire history of the grassland and savanna regions in South Africa. J Quat Sci 17:77–86CrossRefGoogle Scholar
  83. Scott L, Steenkamp M (1996) Environmental history and recent human disturbance at coastal Lake Teza, Kwazulu/Natal. S Afr J Sci 92:348–350Google Scholar
  84. Scott L, Holmgren K, Talma AS, Woodborne S, Vogel JC (2003) Age interpretation of the Wonderkrater spring sediments and vegetation change in the savanna biome, Limpopo Province, South Africa. S Afr J Sci 99:484–488Google Scholar
  85. Scott L, Neumann FH, Brook GA, Bousman CB, Norström E, Metwally AA (2012) Terrestrial fossil Pollen Evidence of Climate Change during the last 26 Thousand Years in Southern Africa. Quat Sci Rev 32:100–118CrossRefGoogle Scholar
  86. Stix E (1960) Pollenmorphologische Untersuchungen an Compositen. Grana 2/2:41–114Google Scholar
  87. Stockmarr J (1971) Tablet with spores used in absolute pollen analysis. Pollen Spores 13:614–621Google Scholar
  88. Tyson PD, Preston-Whyte RA, Schulze RE (1976) The climate of the Drakensberg. The Town and Regional Planning Commission, PietermaritzburgGoogle Scholar
  89. Van Geel B (1976) A palaeoecological study of Holocene peat bog sections, based on the analysis of pollen, spores and macro and microscopic remains of fungi, algae, cormophytes and animals. Academisch proefschrift. Hugo de Vries laboratorium, Universiteit van Amsterdam, AmsterdamGoogle Scholar
  90. Van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damste JS, Verschuren D (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol 164:174–190Google Scholar
  91. Van Wyk AE, Smith GF (2001) Regions of floristic endemism in southern Africa. Umdaus Press, PretoriaGoogle Scholar
  92. Van Zinderen Bakker EM (1953–1970) South African pollen grains and spores. Part I–III. Balkema, AmsterdamGoogle Scholar
  93. Van Zinderen Bakker EM (1955) A preliminary survey of peat bogs of the Alpine belt of Northern Basutoland. Acta Geogr 14:413–422Google Scholar
  94. Vogel JC, Fuls A, Ellis RP (1978) The geographical distribution of Kranz grasses in South Africa. S Afr J Sci 74:209–215Google Scholar
  95. White JF (1987) Widespread distribution of endophytes in the Poaceae. Plant Dis 71:340–342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Frank H. Neumann
    • 1
  • Gregory A. Botha
    • 2
  • Louis Scott
    • 3
  1. 1.Forschungsstelle PaläobotanikUniversity of MünsterMünsterGermany
  2. 2.Council for GeosciencePietermaritzburgSouth Africa
  3. 3.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations