Vegetation History and Archaeobotany

, Volume 23, Issue 3, pp 277–298 | Cite as

Roman impact on the landscape near castellum Fectio, The Netherlands

  • Valerie van den Bos
  • Otto Brinkkemper
  • Ian D. Bull
  • Stefan Engels
  • Tom Hakbijl
  • Mans Schepers
  • Marieke van Dinter
  • Guido van Reenen
  • Bas van GeelEmail author
Original Article


Castellum Fectio was one of the largest fortifications along the Limes, the northern border of the Roman Empire. The castellum, situated 5 km southeast of Utrecht, the Netherlands, was occupied from around the start of our Era to ca. a.d. 260. It was situated along a river bend of the Rhine that was cut off from the main stream during the occupation of the Roman fort. A 6 m long sediment sequence was recovered from the infill of the residual channel and pieces of Roman wall plaster, glume bases of Triticum spelta and radiocarbon dates indicate that the sediments were deposited during the period of Roman occupation. The combined palaeoecological analyses—palynological, macrobotanical, entomological and geochemical—allow a detailed reconstruction of changing environmental conditions as a consequence of the Roman occupation. The pollen record reveals a dramatic decrease in arboreal pollen, suggesting that the Romans were involved in large-scale deforestation, transforming semi-open parkland to a landscape of meadows and agricultural fields. Non-pollen palynomorphs, botanical macrofossils and insect remains support this conclusion. The recorded mycoflora shows a shift from assemblages characterised by the tree pathogen Kretzschmaria deusta to assemblages dominated by spores of fungi associated with herbaceous plants, concurrent with the decrease in arboreal pollen. The presence of masticated bran fragments of cereals, clover remains, eggs of intestinal parasites and entomological and geochemical data in the upper part of the sequence indicates that these sediments largely consist of faeces that were dumped into the former channel. Surprisingly, seeds of salt tolerant species are encountered in the sediments of this inland site, which was situated outside the influence of the sea. Horses may have brought these seeds to Fectio in their intestinal tracts after grazing in coastal meadows.


Roman impact Palaeoecology Palynology Deforestation The Netherlands 



This study is dedicated to Hilary Birks who, with her studies, has given strong positive impulses to the field of palaeoecology. We would like to thank her for her dedication and look forward to continuing our cooperation and discussions on future projects and scientific meetings. We would like to thank the following people for their contributions to our study: Bram Jansen (RAAP, Leiden) for geo-archaeological prospecting of the site; Wim Hoek (Utrecht University) for field-assistance and logistic support; Marchien Wolma and Thomas Slagter for field-assistance; Henk van Haaster (BIAX Consult, Zaandam) for the identifications of the mammal hairs; Corrie Bakels (Leiden University), Laura Kooistra and Pauline van Rijn (BIAX Consult, Zaandam) and Lara Laken (Radboud University, Nijmegen) for providing expert knowledge contributing greatly to the discussion section; Hans Huisman, Bertil van Os (RCE, Amersfoort) and Nikolaj Walraven (Geoconnect, Castricum) for conducting the XRF spectrometry; Wim Kuijper (Leiden University) for performing the parasite analysis; Willem Toonen (Utrecht University) for supporting AMS 14C dating. The photos of hairs were made by Mark van Waijjen (BIAX Consult), all other photos were made by Jan van Arkel (University of Amsterdam). Pollen slides were prepared by Annemarie Philip (University of Amsterdam). We thank two anonymous referees for valuable comments that helped to improve this manuscript.

Supplementary material

334_2013_424_MOESM1_ESM.xls (52 kb)
Supplementary material 1 (XLS 51 kb)
334_2013_424_MOESM2_ESM.tif (168 kb)
Supplementary material 2 (TIFF 168 kb)


  1. Appleyard HM (1978) Guide to the identification of animal fibres. Wira, LeedsGoogle Scholar
  2. Bakels CC (2010) De vroegste vondsten van bolderik (Agrostemma githago L.) in. In: Bakels CC, Fennema K, Out WA, Vermeeren C (eds) Of plants and snails. Sidestone Press, Leiden, pp 13–20Google Scholar
  3. Bakker JP, Gálvez Bravo L, Mouissie AM (2007) Dispersal by cattle of salt-marsh and dune species into salt-marsh and dune communities. Plant Ecol 179:43–45Google Scholar
  4. Behre KE (1969) Der Wert von Holzartenbestimmungen aus vorgeschichtlichen Siedlungen (dargestellt an Beispielen aus Norddeutschland). Neue Ausgrab Forsch Nds 4:348–358Google Scholar
  5. Behre KE (1979) Zur Rekonstruktion ehemaliger Pflanzengesellschaften an der deutschen Nordseeküste. In: Wilmanns O, Tüxen R (eds) Werden und Vergehen von Pflanzengesellschaften. Cramer, Vaduz, pp 181–214Google Scholar
  6. Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  7. Bethell PH, Goad LJ, Evershed RP, Ottaway J (1994) The study of molecular markers of human activity: the use of coprostanol in the soil as an indicator of human faecal material. J Archaeol Sci 21:619–632CrossRefGoogle Scholar
  8. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  9. BLWG Verspeidingsatlas Online (2013) Accessed Apr 2013
  10. Bouchet F, Guidon N, Dittmar K, Harter S, Ferreira LF, Chaves SM, Reinhard K, Araújo A (2003) Parasite remains in archaeological sites. Memórias do Instituto Oswaldo Cruz 98:47–52CrossRefGoogle Scholar
  11. Brinkkemper O (1993) Wetland farming in the area to the south of the Meuse estuary during the Iron Age and Roman Period. An environmental and palaeo-economic reconstruction. Thesis Leiden, Analecta Praehist Leidensia 24, University of Leiden, LeidenGoogle Scholar
  12. Brunner H, Coman BJ (1974) The identification of mammalian hair. Inkata Press, MelbourneGoogle Scholar
  13. Bull ID, Betancourt PP, Evershed RP (1999a) Chemical evidence for a structured agricultural manuring regime on the island of Pseira, Crete during the Minoan Period. Aegaeum 20:69–74Google Scholar
  14. Bull ID, Simpson IA, van Bergen PF, Evershed RP (1999b) Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73:86–96Google Scholar
  15. Bull ID, Simpson IA, Dockrill SJ, Evershed RP (1999c) Organic geochemical evidence for the origin of ancient anthropogenic soil deposits at Tofts Ness, Sanday, Orkney. Org Geochem 30:535–556CrossRefGoogle Scholar
  16. Bull ID, Lockhear MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Int 27:647–654CrossRefGoogle Scholar
  17. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland. Barkhuis and Groningen University Library, GroningenGoogle Scholar
  18. Cavallo C, Kooistra LI, Dütting M (2008) Food supply to the Roman army in the Rhine delta in the first century a.d.. In: Stallibrass S, Thomas R (eds) Feeding the Roman army. Oxbow Books, Oxford, pp 69–82Google Scholar
  19. Coope GR, Osborne PJ (1968) Report on the coleopterous fauna of the Roman well at Barnsley Park, Gloucestershire. Trans Bristol Glos Archaeol Soc 86:84–87Google Scholar
  20. Cosyns E, Claerbout S, Lamoot I, Hoffman M (2005) Endozoochorous seed dispersal by cattle and horse in a spatially heterogeneous landscape. Plant Ecol 178:149–162CrossRefGoogle Scholar
  21. De Marinis AM, Asprea A (2006) Hair identification key for wild and domestic ungulates from southern Europe. Wildl Biol 12:305–320CrossRefGoogle Scholar
  22. Deedrick DW, Koch SL (2004) Microscopy of hair part II: a practical guide and manual for animal hairs. Forensic Sci Commun. 6(3). Accessed Apr 2013
  23. Diot MF (1992) Études palynologiques de blés sauvages et domestiques issues de cultures expérimentales. In: Préhistoire de l’agriculture: nouvelles approched expérimentales et ethnographiques. Centre National de la Recherche Scientifique, Monographie de CRA No 6, Périgueux, pp 107–111Google Scholar
  24. Drost MBP, Cuppen HPJJ, van Nieuwkerken EJ, Schreijer M (eds) (1992) De waterkevers van Nederland. KNNV Publishing, UtrechtGoogle Scholar
  25. Dumayne L, Barber KE (1994) The impact of the Romans on the environment of northern England: pollen data from three sites close to Hadrian’s Wall. Holocene 4:165–173CrossRefGoogle Scholar
  26. Esser E, Beerenhout B, Rijkelijkhuizen M, Hakbijl T, van Haaster H (2010) Dierlijke resten. In: Dijkstra J, Houkes MC, Ostkamp S (eds) Over leven aan de rand van Gouda. ADC rapport 1770, Amersfoort, pp 237–292Google Scholar
  27. Evershed RP, Bethell PH (1996) Application of multimolecular biomarker techniques to the identification of faecal material in archaeological soils and sediments. ACS Symp Ser 625:157–172CrossRefGoogle Scholar
  28. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  29. Florenzano A, Mercuri AM, Pederzoli A, Torri P, Bosi G, Olmi L, Rinaldi R, Bandini Mazzanti M (2012) The significance of intestinal parasite remains in pollen samples from medieval pits in the Piazza Garibaldi of Parma, Emilia Romagna, Northern Italy. Geoarchaeology 27:34–47CrossRefGoogle Scholar
  30. Freude H, Harde KW, Lohse GA (eds) (1965–1983) Die Käfer Mitteleuropas. Goecke & Evers, Krefeld, pp 1–11Google Scholar
  31. Frohne D, Pfänder HJ (2005) Poisonous plants: a handbook for doctors, pharmacists, toxicologists, biologists and veterinarians, 2nd edn. Timber Press, PortlandGoogle Scholar
  32. Glasbergen W, Groenman-van Waateringe W (1974) The pre-Flavian garrisons of Valkenburg Z. H.: fabriculae and bipartite barracks. North-Holland Publishing Company, AmsterdamGoogle Scholar
  33. Grimm EC (1992/2004) TILIA, TILA.GRAPH, and TGView. Illinois State Museum, Research and Collections Center, Springfield, USAGoogle Scholar
  34. Groot M (2008) Animals in ritual and economy in a Roman frontier community: Excavations in Tiel-Passewaaij. Dissertation, Vrije Universiteit AmsterdamGoogle Scholar
  35. Groot M, Kooistra LI (2009) Land use and agrarian economy in the Roman Dutch River Area. Internet Archaeol. doi: 10.11141/ia.27.5 Google Scholar
  36. Hakbijl T (2001) Arthropoden. In: Louwe Kooijmans LP (ed) Archeologie in de Betuweroute: Hardinxveld-Giessendam Polderweg. Een mesolitisch jachtkamp in het rivierengebied (5500–5000 v. Chr.). ROB Rapportage Archeologische Monumentenzorg 83, Amersfoort, pp 277–284Google Scholar
  37. Hennekens SM, Smits NAC, Schaminée JHJ (2010) SynBioSys Nederland versie 2. Alterra, WageningenGoogle Scholar
  38. Hessing WAM, Polak M, Vos WK, Wynia SL (eds) (1997) Romeinen langs de snelweg: Bouwstenen voor Vechtens verleden. Uniepers, AmersfoortGoogle Scholar
  39. Kalis AJ, Karg S, Meurers-Balke J, Teunissen-van Oorschot H (2008) Mensch und Vegetation am unteren Niederrhein während der Eisen- und Römerzeit. In: Müller M, Schalles HJ, Zieling N (eds) Colonia Ulpia Traiana: Xanten und sein Umland in römischer Zeit, vol 1. Philipp von Zabern, Mainz, pp 31–48Google Scholar
  40. Koch K (1989–1992) Die Käfer Mitteleuropas, Ökologie 1–3. Goecke & Evers, KrefeldGoogle Scholar
  41. Kooistra LI (1996) Borderland farming. Van Gorcum, AssenGoogle Scholar
  42. Kooistra LI (2009) The provenance of cereals for the Roman army in the Rhine delta, based on archaeobotanical evidence. Beih Bonner Jahrb 58:219–237Google Scholar
  43. Kooistra I, van Dinter M, Dütting MK, van Rijn P, Cavallo C (2013) Could the local population of the Lower Rhine delta supply the Roman army? Part 1: the archaeological and historical framework. J Archaeol Low Ctries 4:5–23Google Scholar
  44. Körber-Grohne U (1964) Bestimmungsschlüssel für Subfossile Juncus-Samen und Gramineen-Früchte. Probl Küstenforsch südl Nordseegebiet 7:1–47Google Scholar
  45. Körber-Grohne U (1991) Identification methods. In: van Zeist W, Wasylikova K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 3–24Google Scholar
  46. Kuijper WJ, Turner H (1992) Diet of a Roman centurion at Alphen aan den Rijn, The Netherlands, in the first century a.d.. Rev Palaeobot Palynol 73:187–204CrossRefGoogle Scholar
  47. Landwehr J (1984) Nieuwe atlas Nederlandse bladmossen. Thieme, ZutphenGoogle Scholar
  48. Lohse GA, Lucht WH (eds) (1989–1994) Die Käfer Mitteleuropas, 12–14. Supplementband mit Katalogteil 1–3. Goecke & Evers, KrefeldGoogle Scholar
  49. Lundqvist N (1972) Nordic Sordariaceae s. lat. Symb Bot Upsaliensis 20:1–374Google Scholar
  50. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  51. Osborne PJ (1983) An insect fauna from a modern cesspit and its comparison with probable cesspit assemblages from archaeological sites. J Archaeol Sci 10:453–463CrossRefGoogle Scholar
  52. Pals JP, Hakbijl T (1992) Weed and insect infestation of a grain cargo in a ship at the Roman fort of Laurium in Woerden (Province of Zuid-Holland). Rev Palaeobot Palynol 73:287–300CrossRefGoogle Scholar
  53. Pickersgill B (2005) Spices. In: Prance G, Nesbitt M (eds) The cultural history of plants. Routledge, New York, pp 153–172Google Scholar
  54. Polak M (2006) Bunnik/Vechten—Fectio. In: Reddé M, Brulet R, Fellmann R, Haalebos JK, Von Schnurbein S (eds) L’architecture de la Gaule romaine: Les fortifications militaires. Documents d’Archéologie Française 100, Paris-Bordeaux, pp 244–248Google Scholar
  55. Polak M (2009) The Roman military presence in the Rhine delta in the period c. a.d. 40–140. In: Morillo A, Hanel N, Martín E (eds) Limes Int. Congress of Roman Frontiers studies, Leon (España), Septiembre 2006, Madrid. Anejos de Gladius 13, Madrid, pp 945–953Google Scholar
  56. Polak M, Wynia SL (1991) The Roman forts at Vechten: a survey of the excavations 1829–1989. Oudheidkundige Mededeelingen van het Rijksmuseum van Oudheden te Leiden 71:125–156Google Scholar
  57. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal b.p.. Radiocarbon 51:1,111–1,150Google Scholar
  58. Schaminée JHJ, Stortelder AHF, Hommel PWFM, Weeda EJ, Westhoff V (1995/1996/1998/1999) De vegetatie van Nederland, vol 1 (1995a), vol 2 (1995b), vol 3 (1996), vol 4 (1998), vol 5 (1999). Opulus Press, UppsalaGoogle Scholar
  59. Schepers M, Scheepens JF, Cappers RTJ, van Tongeren OFR, Raemaekers DCM, Bekker RM (2013a) An objective method based on assemblages of subfossil plant macro-remains to reconstruct past natural vegetation: a case study at Swifterbant, The Netherlands. Veget Hist Archaeobot 22:243–255CrossRefGoogle Scholar
  60. Schepers M, Cappers RTJ, Bekker RM (2013b) A review of prehistoric and early historic mainland salt marsh vegetation in the northern-Netherlands based on the analysis of plant macrofossils. J Coast Conserv. doi: 10.1007/s11852-013-0275-y Google Scholar
  61. Schweingruber FH (1978) Mikroskopische Holzanatomie. Zuercher AG, ZugGoogle Scholar
  62. Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  63. Siebel H, During H (2006) Beknopte mosflora van Nederland en België. KNNV Uitgeverij, UtrechtGoogle Scholar
  64. Simpson IA, Bull ID, Dockrill SJ, Evershed RP (1998) Early anthropogenic soil formation at Tofts Ness, Sanday, Orkney. J Archaeol Sci 25:729–746CrossRefGoogle Scholar
  65. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  66. Stuiver M, Reimer PJ (1993) CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  67. Tamis WLM, van der Meijden R, Runhaar J, Bekker RM, Ozinga WA, Odé B, Hoste I (2004) Standaardlijst van de Nederlandse flora 2003. Gorteria 30:101–191Google Scholar
  68. Teunissen D (1988) De bewoningsgeschiedenis van Nijmegen en omgeving, haar relatie tot de landschapsbouw en haar weerspiegeling in palynologische gegevens. Mededelingen van de Afdeling Biogeologie van de Sectie Biologie van den Katholieke Universiteit van Nijmegen 15:1–108Google Scholar
  69. Teunissen D, Teunissen-van Oorschot H, De Man R (1987) Palynological investigations in castellum Meinerswijk near Arnhem (The Netherlands). Proc Koninklijke Nederlandse Akademie van Wetenschappen 90:211–229Google Scholar
  70. The Plant List (2012) Version 1. Accessed Apr 2013
  71. Touw A, Rubers WV (1989) De Nederlandse bladmossen. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, UtrechtGoogle Scholar
  72. van der Linden M (2011) Palynologisch onderzoek. In: Weterings P, Meijer Y (eds) Op zoek naar de weg. LR60: onderzoek naar de Romeinse limesweg in De Meern, Utrecht. Basisrapportage Archeologie Gemeente Utrecht 33, pp 141–145Google Scholar
  73. van Dinter M (2013) The Roman Limes in the Netherlands: how a delta landscape determined the location of the military structures. Neth J Geosci 92:11–32Google Scholar
  74. van Dinter M, Kooistra LI, Dütting MK, van Rijn P, Cavallo C (2013) Could the local population of the Lower Rhine delta supply the Roman army? Part 2: modelling the carrying capacity using archaeological, palaeo-ecological and geomorphological data. J Archaeol Low Ctries 5:5–50Google Scholar
  75. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  76. van Geel B, Aptroot A (2006) Fossil ascomycetes in quaternary deposits. Nova Hedwig 82:313–329CrossRefGoogle Scholar
  77. van Geel B, Bohncke SJP, Dee H (1981) A palaeoecological study of an upper late glacial and Holocene sequence from “De Borchert”, The Netherlands. Rev Palaeobot Palynol 31:367–448CrossRefGoogle Scholar
  78. van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:50–129Google Scholar
  79. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  80. van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damsté JS, Verschuren D (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol 164:174–190CrossRefGoogle Scholar
  81. van Geel B, Engels S, Martin-Puertas C, Brauer A (2013) Ascospores of the parasitic fungus Kretzschmaria deusta as rainstorm indicators during a late Holocene beech-forest phase around lake Meerfelder Maar, Germany. J Paleolimnol 50:33–40CrossRefGoogle Scholar
  82. van Haaster H (2003) Archeobotanie. In: Vos WK, Blom E (eds) Archeologisch onderzoek naar de Romeinse vindplaatsen De Balije en Context Schip in de gemeente Utrecht. ADC rapport 171, Bunschoten, pp 59–67Google Scholar
  83. van Haaster H (2007) Pollen-en macrorestenonderzoek: voedselgewassen en vegetatiereconstructie. In: van der Kamp J (ed) Vroege Wacht. LR31 Zandweg: Archeologisch onderzoek van twee eerste eeuwse houten wachttorens in Leidsche Rijn. Basisrapportage archeologie Gemeente Utrecht 16, pp 158–164Google Scholar
  84. van Haaster H (2010) Archeobotanisch onderzoek. In: Langeveld MCM, Luksen-IJtsma A (eds), Wegens Wateroverlast. LR39. De Balije II: rivierdynamiek, wachttorens en infrastructuur in de Romeinse tijd in een rivierbocht. Basisrapportage Archeologie Gemeente Utrecht 11, pp 177–180Google Scholar
  85. van Zeist W (1974) Studies of settlement sites in the coastal area of The Netherlands. Palaeohist 26:223–371Google Scholar
  86. Vánky K (1994) European smut fungi. Fischer, StuttgartGoogle Scholar
  87. Vorst O (2010) Catalogus van de Nederlandse kevers. Nederlandse Entomologische Vereniging, AmsterdamGoogle Scholar
  88. Vos WK (2009) Bataafs platteland. Het Romeinse nederzettingslandschap in het Nederlandse Kromme-Rijngebied. Nederlandse Archeologische Rapporten 3. Dissertation, Amsterdam University, AmersfoortGoogle Scholar
  89. Vos PC, Bazelmans J, Weerts HJT, van der Meulen MJ (eds) (2011) Atlas van Nederland in het Holoceen: landschap en bewoning vanaf de laatste ijstijd tot nu. Bert Bakker, AmsterdamGoogle Scholar
  90. Waasdorp JA, Lanzing JJ, van der Linden E, Siemons H, van Zoolingen RJ, Storm P (2012) Den Haag Ockenburgh. Een fortificatie als onderdeel van de Romeinse kustverdediging. Haagse Oudheidkundige Publicaties13. Dienst Stadsbeheer, Den HaagGoogle Scholar
  91. Weeda EJ, Westra R, Westra C, Westra T (2003) Nederlandse oecologische flora: wilde planten en hun relaties 1–5. KNNV Uitgeverij/IVN, Utrecht/AmsterdamGoogle Scholar
  92. Wells FH, Lauenroth WK (2007) The potential for horses to disperse alien plants along recreational trails. Rangel Ecol Manag 60:574–577CrossRefGoogle Scholar
  93. Zandstra MJM, Polak M (2012) De Romeinse versterkingen in Vechten-Fectio. Het archeologisch onderzoek in 1946–1947. Auxiliaria 11, NijmegenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valerie van den Bos
    • 1
  • Otto Brinkkemper
    • 2
  • Ian D. Bull
    • 3
  • Stefan Engels
    • 1
  • Tom Hakbijl
    • 4
  • Mans Schepers
    • 5
  • Marieke van Dinter
    • 6
  • Guido van Reenen
    • 1
  • Bas van Geel
    • 1
    Email author
  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Cultural Heritage AgencyAmersfoortThe Netherlands
  3. 3.School of ChemistryUniversity of BristolBristolUK
  4. 4.Department of Terrestrial ZoologyNaturalis Biodiversity CenterLeidenThe Netherlands
  5. 5.Groningen Institute of ArchaeologyUniversity of GroningenGroningenThe Netherlands
  6. 6.Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations