Vegetation History and Archaeobotany

, Volume 23, Issue 6, pp 729–742 | Cite as

Biomass burning response to high-amplitude climate and vegetation changes in Southwestern France from the Last Glacial to the early Holocene

  • Damien Rius
  • Didier Galop
  • Elise Doyen
  • Laurent Millet
  • Boris Vannière
Original Article


The main drivers of fire regimes in southern Europe are climate, vegetation and land-use changes that interact at different spatio-temporal scales. These complex interplays between “natural” and anthropogenic forcings hinder the identification of fire-climate linkages on the long time scale. In this paper, we focused on the Last Glacial–Holocene transition, which is the last time Europe experienced rapid warming of similar magnitude and rate of change as predicted for the future, and with minimal human impact (no agricultural activities). We derived fire activity from two neighbouring lacustrine macrocharcoal records, Ech paleolake and Lake Lourdes, located 3 km apart. To understand the effect of external forcings, we reconstructed summer T° changes and vegetation dynamics from two independent proxies. We then compared both paleofire records with chironomid-inferred summer air temperature reconstruction from Ech paleolake. We discuss the role of vegetation type, structure and biomass availability using pollen analysis from Ech paleolake and Lourdes. Fire activity is strongly modulated by summer T° oscillations as shown by the highly contrasted responses between the Oldest Dryas/Interstadial and Younger Dryas/Holocene transitions. However, vegetation type and biomass availability act as limiting factors: the slight increase in fire activity at the onset of the Interstadial is triggered by a 7 °C summer T° increase but remains limited by low availability of woody biomass in a steppe environment. On the contrary, the onset of the Holocene is characterised by a 2 °C summer T° increase and an unprecedented increase in fire activity, conditioned by the establishment of dense deciduous forests.


Fire Charcoal Late-Glacial High-amplitude climate change Pyrenees 



This study was funded by the ANPYR research program (FEDER/Western Pyrenees National Park) and the Laboratoire Chrono-Environnement (CNRS, Université de Franche-Comté). The authors express their sincere thanks to Michel Magny and Nicolas Valdeyron for helpful comments on the manuscript, and to Michael Coughlan for English editing.


  1. Allen JRM, Huntley B, Watts WA (1996) The vegetation and climate of northwest Iberia over the last 14000 year. J Quat Sci 11:125–147CrossRefGoogle Scholar
  2. Aubert S, Belet JM, Bouchette A, Otto T, Dedoubat JJ, Fontugne M, Jalut G (2004) Dynamique tardiglaciaire et holocène de la végétation à l’étage montagnard dans les Pyrénées Centrales. CR Biol 327:381–388CrossRefGoogle Scholar
  3. Bahn PG (1984) Pyrenean prehistory: a palaeoeconomic survey of the French sites. Aris & Phillips Ltd, WarminsterGoogle Scholar
  4. Barbaza M, Lacombe S (2005) L’Azilien des Pyrénées: une culture originale. In: Jaubert J, Barbaza M (eds) Territoires, déplacements, mobilité, échanges durant la Préhistoire: Terres et Hommes du Sud. CTHS, p 421–428Google Scholar
  5. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10,000,000 years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  6. Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1,127–1,139CrossRefGoogle Scholar
  7. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  8. Briles CE, Whitlock C, Meltzer DJ (2012) Last Glacial-interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation. Quat Res 77:96–103CrossRefGoogle Scholar
  9. Briois F, Vacquer J (2009) L’abri de Buholoup. De l’Épipaléolithique au Néolithique ancien dans le piedmont central des Pyrénées. De Méditerranée et d’ailleurs, mélanges offerts à J. Guilaine. Archives d’Ecologie Préhistorique 141–150Google Scholar
  10. Clark JS, Merkt J, Muller H (1989) Post-glacial fire, vegetation, and human history on the northern alpine forelands, south-western germany. J Ecol 77:897–925Google Scholar
  11. Daniau A.-L, Goni MFS, Duprat J (2009) Last Glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. Quat Res 71:385–396Google Scholar
  12. Daniau A.-L, d’Errico F, Goñi MFS (2010) Testing the hypothesis of fire use for ecosystem management by Neanderthal and upper palaeolithic modern human populations. PLoS ONE 5(2):e9157. doi: 10.1371/journal.pone.0009157
  13. Fernandes PM, Luz A, Loureiro C (2010) Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. For Ecol Manag 260:883–892Google Scholar
  14. Finsinger W, Tinner W, Van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the Southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  15. Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507CrossRefGoogle Scholar
  16. Ghesquière E, Marchand G (2010) Le Mésolithique en France: Archéologie des derniers chasseurs-cueilleurs. La Découverte, ParisGoogle Scholar
  17. Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 degrees C global warming. Glob Planet Change 68:209–224CrossRefGoogle Scholar
  18. González-Samperíz P, Valéro-Garcés BL, Moreno A, Jalut G, García-Ruíz JM, Martí Bono C, Delgado-Huerta A, Otto T, Dedoubat JJ (2006) Climate variability in the Spanish Pyrenees for the last 30000 year: El Portalet peatbog sequence. Quat Res 66:38–52CrossRefGoogle Scholar
  19. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44CrossRefGoogle Scholar
  20. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  21. Heiri O, Brooks SJ, Birks HJB, Lotter AE (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3, 445–453, 456Google Scholar
  22. Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219CrossRefGoogle Scholar
  23. Innes JB, Blackford JJ (2003) The ecology of late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194CrossRefGoogle Scholar
  24. Jalut G, Marti JM, Fontugne M, Delibrias G, Vilaplana JM, Julia R (1992) Glacial to interglacial vegetation changes in the northern and southern pyrenees: deglaciation, vegetation cover and chronology. Quat Sci Rev 11:449–480CrossRefGoogle Scholar
  25. Jalut G, Michels VTI, Dedoubat JJ, Otto T, Ezquerra J, Fontugne M, Belet JM, Bonnet L, De Celis AG, Redondo-Vega JM, Vidal-Romani JR, Santos L (2010) Palaeoenvironmental studies in NW Iberia (Cantabrian range): vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeogr Palaeoclim Palaeoecol 297:330–350CrossRefGoogle Scholar
  26. Kaltenrieder P, Procacci G, Vanniere B, Tinner W (2010) Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Late-Glacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). Holocene 20:679–695CrossRefGoogle Scholar
  27. Killick R, Eckley IA (2011) Changepoint: An R package for changepoint analysis. Accessed 25 Nov 2013
  28. Krawchuk MA, Moritz MA, Parisien M.-A, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4(4):e5102. doi: 10.1371/journal.pone.0005102
  29. Lotter AF, Eicher U, Siegenthaler U, Birks HJB (1992) Late-Glacial climatic oscillations as recorded in swiss lake-sediments. J Quat Sci 7:187–204CrossRefGoogle Scholar
  30. Lowe JJ, Rasmussen SO, Bjorck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC, Grp I (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the last termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27:6–17CrossRefGoogle Scholar
  31. Magny M, Aalbersberg G, Begeot C, Benoit-Ruffaldi P, Bossuet G, Disnar JR, Heiri O, Laggoun-Defarge F, Mazier F, Millet L, Peyron O, Vanniere B, Walter-Simonnet AV (2006a) Environmental and climatic changes in the Jura mountains (eastern France) during the Late-Glacial–Holocene transition: a multi-proxy record from Lake Lautrey. Quat Sci Rev 25:414–445CrossRefGoogle Scholar
  32. Magny M, De Beaulieu JL, Drescher-Schneider R, Vanniere B, Walter-Simonnet AV, Millet L, Bossuet G, Peyron O (2006b) Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa. J Quat Sci 21:311–320CrossRefGoogle Scholar
  33. Marlon JR, Bartlein PJ, Walsh MK, Harrison SP, Brown KJ, Edwards ME, Higuera PE, Power MJ, Anderson RS, Briles C, Brunelle A, Carcaillet C, Daniels M, Hu FS, Lavoie M, Long C, Minckley T, Richard PJH, Scott AC, Shafer DS, Tinner W, Umbanhowar CE, Whitlock C (2009) Wildfire responses to abrupt climate change in North America. Proc Natl Acad Sci USA 106:2,519–2,524Google Scholar
  34. Mason SLR (2000) Fire and Mesolithic subsistence: managing oaks for acorns in northwest Europe? Palaeogeogr Palaeoclim Palaeoecol 164:139–150CrossRefGoogle Scholar
  35. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry: an overview of indicators of organic-matter sources and diagenesis in lake-sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  36. Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Late-Glacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclim Palaeoecol 315:86–99CrossRefGoogle Scholar
  37. Muñoz-Sobrino C, Ramil-Rego P, Gómez-Orellana L (2007) Late Würm and early Holocene in the mountains of northwest Iberia: biostratigraphy, chronology andtree colonization. Veget Hist Archaeobot 16:223–240CrossRefGoogle Scholar
  38. Pausas JG, Fernandez-Munoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226CrossRefGoogle Scholar
  39. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19,167-19,170Google Scholar
  40. Pezzatti GB, Zumbrunnen T, Bürgi M, Ambrosetti P, Conedera M (2013) Fire regime shifts as a consequence of fire policy and socio-economic development: an analysis based on the change point approach. For Policy Econ 29:7–18CrossRefGoogle Scholar
  41. Power MJ, Marlon J, Ortiz N et al (2008) Changes in fire regimes since the Last Glacial maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30:887–907CrossRefGoogle Scholar
  42. Ralska-Jasiewiczowa M, Nalepka D, Goslar T (2003) Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veget Hist Archaeobot 12:233–247CrossRefGoogle Scholar
  43. Reille M, Andrieu V (1995) The late Pleistocene and Holocene in the Lourdes basin, Western Pyrenees, France: new pollen analytical and chronological data. Veget Hist Archaeobot 4:1–21CrossRefGoogle Scholar
  44. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) Intcal09 and marine09 radiocarbon age calibration curves, 0–50000 years cal. b.p. Radiocarbon 51:1,111–1,150Google Scholar
  45. Rhodes AN (1998) A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores. Holocene 8:113–117CrossRefGoogle Scholar
  46. Rius D, Vanniere B, Galop D (2009) Fire frequency and landscape management in the northwestern Pyrenean piedmont, France, since the early Neolithic (8000 cal. b.p.). Holocene 19:847–859CrossRefGoogle Scholar
  47. Rius D, Vanniere B, Galop D, Richard H (2011) Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quat Sci Rev 30:1,696–1,709Google Scholar
  48. Rius D, Vanniere B, Galop D (2012) Holocene history of fire, vegetation and land use from the central Pyrenees (France). Quat Res 77:54–64CrossRefGoogle Scholar
  49. R Development Core Team (2011) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Accessed 25 Nov 2013
  50. Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza CHD, Oppenheimer M, Pittock AB, Rahman A, Smith JB, Suarez A, Yamin F (2007) Assessing key vulnerabilities and the risk from climate change. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 779–810Google Scholar
  51. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1,189–1,206Google Scholar
  52. Ter Braak CJF, Juggins S (1993) Weighted averaging partial least-squares regression (wa-pls): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502CrossRefGoogle Scholar
  53. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the Southern Alps. Holocene 10:565–574CrossRefGoogle Scholar
  54. Valdeyron N (2008) The Mesolithic in France. In: Bailey G, Spikins P (eds) Mesolithic Europe. Cambridge University Press, Cambridge, pp 182–202Google Scholar
  55. Van der Hammen T, Van Geel B (2008) Charcoal in soils of the Allerod-Younger Dryas transition were the result of natural fires and not necessarily the effect of an extra-terrestrial impact. Netherl J Geosci Geol en Mijnbouw 87:359–361Google Scholar
  56. Vanniere B, Bossuet G, Walter-Simonnet AV, Ruffaldi P, Adatte T, Rossy M, Magny M (2004) High-resolution record of environmental changes and tephrochronological markers of the Last Glacial–Holocene transition at Lake Lautrey (Jura, France). J Quat Sci 19:797–808CrossRefGoogle Scholar
  57. Wagner-Cremer F, Lotter AF (2011) Spring-season changes during the Late pleniglacial and bolling/allerod interstadial. Quat Sci Rev 30:1,825–1,828Google Scholar
  58. Walker MJC (1995) Climatic changes in Europe during the Last Glacial/Interglacial transition. Quat Int 28:63–76CrossRefGoogle Scholar
  59. Walker IR (2001) 3-Midges: Chironomidae and related Diptera. In: Last WM, Smol JP (eds) Tracking Environmental change using lake sediments: Zoological Indicators, vol 4. Kluwer, Dordrecht, pp 43–66CrossRefGoogle Scholar
  60. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943CrossRefGoogle Scholar
  61. Whitlock C, Millspaugh SH (1996) Testing the assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 6:7–15CrossRefGoogle Scholar
  62. Zolitschka B (1998) A 14000 year sediment yield record from western Germany based on annually laminated lake sediments. Geomorph 22:1–17CrossRefGoogle Scholar
  63. Zumbrunnen T, Pezzatti GB, Menendez P, Bugmann H, Burgi M, Conedera M (2011) Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. For Ecol Manag 261:2,188–2,199Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Damien Rius
    • 1
    • 2
  • Didier Galop
    • 2
  • Elise Doyen
    • 1
  • Laurent Millet
    • 1
  • Boris Vannière
    • 1
  1. 1.Laboratoire Chrono-Environnement, UMR 6249 CNRSUniversité de Franche-ComtéBesançonFrance
  2. 2.Laboratoire GEODE, UMR 5602 CNRSUniversité Toulouse II-le MirailToulouseFrance

Personalised recommendations