Vegetation History and Archaeobotany

, Volume 23, Issue 5, pp 527–542 | Cite as

Inter-proxy evidence for the development of the Amazonian mangroves during the Holocene

  • Marlon C. França
  • Mariah I. Francisquini
  • Marcelo C. L. Cohen
  • Luiz C. R. Pessenda
Original Article

Abstract

The dynamics of mangrove forest on the island of Marajó (Ilha de Marajó) at the mouth of the river Amazon during the past ~7,500 cal. b.p. were studied using multiple proxies, including sedimentary facies, pollen, δ13C, δ15N and C/N ratio, related to 15 sediment samples by 14C dating. The results allow us to propose a scheme of palaeogeographical development, with changes in vegetation, hydrology and organic matter dynamics. Today, the interior of the island is occupied by várzea freshwater herbaceous vegetation, but during the early to middle Holocene, mangroves with accumulations of estuarine organic matter colonized the tidal mud flats. This spread of mangroves was caused by post-glacial sea-level rise, which combined with tectonic subsidence, produced a marine transgression. It is likely that the relatively greater marine influence at the studied area was favoured by reduced discharge from the river Amazon, which was itself caused by a dry period that occurred during the early and mid Holocene. During the late Holocene, there was a reduction of mangrove vegetation and the contribution of freshwater organic matter to the area was higher than during the early and mid Holocene. This suggests a decrease in marine influence during the late Holocene which led to a gradual migration of mangrove vegetation from the central region to the northeastern littoral zone of the island, and, consequently, its isolation since at least ~1,150 cal. b.p. This was probably a result of lower tidal water salinity caused by a wet period that resulted in greater river discharge during the late Holocene. This work details the contraction of mangrove forest from the northeastern part of the island of Marajó under the influence of Amazon climatic changes, chronologically and spatially. This allows us to propose a model of successive phases of sediment accumulation and vegetation change, according to the marine-freshwater influence gradient. As demonstrated by this work, the use of a combination of proxies is efficient for establishing a relationship between the changes in estuarine salinity gradient and depositional environment/vegetation.

Keywords

Amazon coastal area Holocene Isotopes Sea-level Vegetation Climate change 

Supplementary material

334_2013_420_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 61 kb)
334_2013_420_MOESM2_ESM.doc (56 kb)
Supplementary material 2 (DOC 56 kb)

References

  1. Absy ML, Cleef A, Fournier M, Martin L, Servant M, Sifeddine A, da Ferreira Silva M, Soubies F, Suguio K, Turcq B, Van Der Hammen TH (1991) Mise en evidence de quatre phases d’overture de la forêt dense dans le sud-est de l’Amazonie au cours des 60,000 dernieres annees. Premiere comparision avec d’autres regions tropicales. Comptes Rendus de l’Acad des Sci 312:673–678Google Scholar
  2. ANA (2003) Hydrological information system. Brazilian National Water Agency. On line dataset, 14.3 MB, http://hidroweb.ana.gov.br/baixar/mapa/Bacia1.zip
  3. Angulo RJ, Lessa GC (1997) The Brazilian sea-level curves: a critical review with emphasis on the curves from the Paranaguá and Cananéia regions. Marine Geol 140:141–166Google Scholar
  4. Angulo RJ, Suguio K (1995) Re-evaluation of the Holocene sea-level maxima for the State of Paraná, Brazil. Palaeogeogr Palaeoclim Palaeoecol 113:385–393Google Scholar
  5. Angulo RJ, Giannini PCF, Suguio K, Pessenda LCR (1999) Relative sea-level changes in the last 5500 years in southern Brazil (Laguna—Imbituba region, Santa Catarina State) based on vermitid 14C ages. Marine Geol 159:323–339Google Scholar
  6. Angulo RJ, De Souza MC, Assine ML, Pessenda LCR, Disaró ST (2008) Chronostratigraphy and radiocarbon age inversion in the Holocene regressive barrier of Paraná, southern Brazil. Marine Geol 252:111–119Google Scholar
  7. Barth JAC, Veizer J, Mayer B (1998) Origin of particulate organic carbon in the upper St. Lawrence: isotopic constraints. Earth Planet Sci Lett 162:111–121Google Scholar
  8. Behling H (1993) Untersuchungen zur spätpleistozänen und holozänen Vegetations-und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Diss Bot 206, Cramer, BerlinGoogle Scholar
  9. Behling H, Costa ML (2001) Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia. Rev Paleobot Palynol 114:145–155Google Scholar
  10. Behling H, Hooghiemstra H (2000) Holocene Amazon rainforest–savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695Google Scholar
  11. Behling H, Cohen MCL, Lara RJ (2001) Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil. Palaeogeogr Palaeoclim Palaeoecol 167:225–242Google Scholar
  12. Behling H, Cohen MCL, Lara RJ (2004) Late Holocene mangrove dynamics of the Marajó Island in northern Brazil. Veget Hist Archaeobot 13:73–80Google Scholar
  13. Bird ECF (1980) Mangroves and coastal morphology. Vic Nat 97:48–58Google Scholar
  14. Blasco F, Saenger P, Janodet E (1996) Mangrove as indicators of coastal change. Catena 27:167–178Google Scholar
  15. Bush MB (1994) Amazonian speciation: a necessarily complex model. J Biogeogr 21:5–18Google Scholar
  16. Bush MB, Colinvaux PA (1988) A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76:141–154Google Scholar
  17. Bush MB, Silman MR, Urrego DH (2004) 48000 years of climate and forest change from biodiversity hotspot. Science 303:827–829Google Scholar
  18. Bush MB, Silman MR, Listopad CMCS (2007) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1,342–1,356Google Scholar
  19. Cahoon DR, Lynch JC (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes 3:173–186Google Scholar
  20. Camargo MG (1999) SYSGRAN for Windows: Granulometric Analyses System. Pontal do Sul, ParanáGoogle Scholar
  21. Castro DF, Rossetti DF, Pessenda LCR (2010) Facies, δ13C, δ15N and C/N analyses in a late Quaternary compound estuarine fill, northern Brazil and relation to sea level. Marine Geol 274:135–150Google Scholar
  22. Chapman VJ (1976) Mangrove vegetation. Cramer, VaduzGoogle Scholar
  23. Chivas AR, Garcia A, Van der Kaars S, Couapel MJJ, Holt S, Reeves JM (2001) Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quat Int 85:19–46Google Scholar
  24. Coffin RB, Fry B, Peterson BJ, Wright RT (1989) Carbon isotopic compositions of estuarine bacteria. Limnol Oceanog 34:1,305–1,310Google Scholar
  25. Cohen MCL (2003) Past and current mangrove dynamics on the Bragança península, northern Brasil. Dissertation, Universität Bremen Google Scholar
  26. Cohen MCL, Lara RJ (2003) Temporal changes of mangrove vegetation boundaries in Amazonia: application of GIS and remote sensing techniques. Wetlands Ecol Manag 11:223–231Google Scholar
  27. Cohen MCL, Behling H, Lara RJ (2005a) Amazonian mangrove dynamics during the last millennium: the relative sea-level and the little Ice Age. Rev Palaeobot Palynol 136:93–108Google Scholar
  28. Cohen MCL, Souza Filho PW, Lara RL, Behling H, Angulo R (2005b) A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (northern Brazil). Wetlands Ecol Manag 13:433–443Google Scholar
  29. Cohen MCL, Lara RJ, Smith CB, Angélica RS, Dias BS, Pequeno T (2008) Wetland dynamics of Marajó Island, northern Brazil, during the last 1000 years. Catena 76:70–77Google Scholar
  30. Cohen MCL, Lara RJ, Smith CB, Matos HRS, Vedel V (2009) Impact of sea-level and climatic changes on the Amazon coastal wetlands during the late Holocene. Veget Hist Archaeobot 18:425–439Google Scholar
  31. Cohen MCL, Pessenda LCR, Behling H, Rossetti DF, França MC, Guimarães JTF, Friaes Y, Smith CB (2012) Holocene palaeoenviromental history of the Amazonian mangrove belt. Quat Sci Rev 55:50–58Google Scholar
  32. Colinvaux PA (1998) A new vicariance model for Amazonian endemics. Glob Ecol Biogeogr Lett 7:95–96Google Scholar
  33. Colinvaux PA, De Oliveira PE, Patiño JEM (1999) Amazon pollen manual and atlas—Manual e Atlas Palinológico da Amazônia. Hardwood, AmsterdamGoogle Scholar
  34. Collinson J, Mountney N, Thompson D (2006) Sedimentary structures (3rd edn). Terra Publishing, HarpendenGoogle Scholar
  35. Color Munsell (2009) Munsell soil color charts, new revised edition. Macbeth Division of Kollmorgen Instruments, New WindsorGoogle Scholar
  36. Davis MB (2000) Palynology after Y2 K—understanding the source area of pollen in sediments. Ann Rev Earth Planet Sci 28:1–18Google Scholar
  37. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. The terrestrial environments, vol 1. Elesvier, Amsterdam, pp 329–406Google Scholar
  38. Desjardins T, Filho AC, Mariotti A, Chauvel A, Girardin C (1996) Changes of the forest savanna boundary in Brazilian Amazonia during the Holocene as revealed by soil organic carbon isotope ratios. Oecologia 108:749–756Google Scholar
  39. DHN (2003) Departamento de Hidrografia e Navegação (Brazil Navy). Marinha do Brasil, Rio de JaneiroGoogle Scholar
  40. Duke NC, Pinzón ZSM, Prada MC (1997) Large-scale damage to mangrove forests following two large oil spills in Panama. Biotropica 29:2–14Google Scholar
  41. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  42. França MC (2010) Mudanças na vegetação do litoral leste da Ilha de Marajó durante o Holoceno superior. Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica. Dissertação de Mestrado, BelémGoogle Scholar
  43. França CF, Sousa Filho PWM (2006) Compartimentação morfológica da margem leste da ilha de Marajó: zona costeira dos municípios de Soure e Salvaterra—Estado do Pará. Revista Brasileira de Geomorfologia 1:33–42Google Scholar
  44. França M, Francisquini MI, Cohen MCL, Pessenda LCR, Rosseti DF, Guimarães J, Smith CB (2012) The last mangroves of Marajó Island—Eastern Amazon: impact of climate and/or relative sea-level changes. Rev Palaeobot Palynol 187:50–65Google Scholar
  45. Freitas HA, Pessenda LCR, Aravena R, Gouveia SEM, Ribeiro AS, Boulet R (2001) Late Quaternary vegetation dynamics in the southern Amazon basin inferred from carbon isotopes in soil organic matter. Quat Res 55:39–46Google Scholar
  46. Fu R, Dickinson RE, Chen M, Wang H (2001) How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? J Climate 14:4,003–4,026Google Scholar
  47. Goh KM (2006) Removal of contaminants to improve the reliability of radiocarbon dates of peats. J Soil Sci 29:340–349Google Scholar
  48. Gornitz V (1991) Global coastal hazards from future sea level Rise. Palaeogeogr Palaeoclim Palaeoecol 89:379–398Google Scholar
  49. Gouveia SEM, Pessenda LCR, Aravena R, Boulet R, Roveratti R, Gomes BM (1997) Dinâmica de vegetações durante o Quaternário recente no sul do Amazonas indicada pelos isótopos do carbono (12C, 13C e 14C). Geochimica Brasiliensis 11:355–367Google Scholar
  50. Grimm EC (1987) Coniss: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Comput Geosci 13:13–35Google Scholar
  51. Guimarães JTF, Cohen MCL, França MC, Lara RJ, Behling H (2010) Model of wetland development of the Amapá coast during the late Holocene. Anais da Acad Brasileira de Ciências 82:451–465Google Scholar
  52. Guimarães JTF, Cohen MCL, Pessenda LCR, França MC, Smith CB, Nogueira ACR (2012) Mid- and late-Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River. Holocene 22:359–370Google Scholar
  53. Haines EB (1976) Stable carbon isotope ratios in biota, soils and tidal water of a Georgia salt marsh. Estuar Coast Mar Sci 4:609–616Google Scholar
  54. Harper CW (1984) Improved methods of facies sequence analysis. In: Walker RG (ed) Facies models. Geoscience Canada, (Reprint Series 1) Geological Association of Canada. Geological Association of Canada, Toronto, pp 11–13Google Scholar
  55. Havinga AJ (1967) Palynology and pollen preservation. Rev Paleobot Palynol 2:81–98Google Scholar
  56. Hermanowski B, Costa ML, Behling H (2012) Environmental changes in southeastern Amazonia during the last 25000 year revealed from a paleoecological record. Quat Res 77:138–148Google Scholar
  57. Herrera LF, Urrego LE (1996) Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana (Pollen atlas of useful and cultivated plants in the Colombian Amazon region). (Estudios en la Amazonia Colombiana 11). Tropenbos-Colombia, BogotáGoogle Scholar
  58. Hesp PA, Dillenburg SR, Barboza EG, Clerot LCP, Tomazelli LJ, Zouain RNA (2007) Morphology of the Itapeva to Tramandai transgressive dunefield barrier system and mid to late Holocene sea level change. Earth Surf Process Landforms 32:407–414Google Scholar
  59. Hutchings P, Saenger P (1987) Ecology of mangroves. Queensland University Press, St. LuciaGoogle Scholar
  60. Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ 13C and C/N ratios in organic material. Earth Sci Rev 75:29–57Google Scholar
  61. Lara JR, Cohen MCL (2006) Sediment porewater salinity, inundation frequency and mangrove vegetation height in Bragança, North Brazil: an ecohydrology-based empirical model. Wetlands Ecol Manag 4:349–358Google Scholar
  62. Lara RJ, Cohen MCL (2009) Palaeolimnological studies and ancient maps confirm secular climate fluctuations in Amazonia. Clim Change 94:399–408Google Scholar
  63. Lentz SJ (1995) The Amazon River plume during AMASSEDS: Subtidal current variability and the importance of wind forcing. J Geophys Res 100:2,377–2,390Google Scholar
  64. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Climate 14:4,308–4,318Google Scholar
  65. Lima AMM, Oliveira LL, Fontinhas RL, Lima RJS (2005) Ilha de Marajó: revisão histórica, hidroclimatológica, bacias hidrográficas e propostas de gestão. Holos Environ 5:65–80Google Scholar
  66. Marengo JA, Druyan LM, Hastenrath S (1993) Observational and modeling studies of Amazonia interannual climate variability. Clim Change 23:267–286Google Scholar
  67. Marengo JA, Liebmann B, Kousky VE, Filizola NP, Wainer IC (2001) Onset and end of the rainy season in the Brazilian Amazon Basin. J Climate 14:833–852Google Scholar
  68. Martin L, Flexor JN, Suguio K (1995) Vibrotestemunhador leve: construção, utilização e potencialidades. Revista IG-USP 16:59–66Google Scholar
  69. Martin L, Suguio K, Flexor J-M, Dominguez JML, Bittencourt ACSP (1996) Quaternary sea-level history and variation in dynamics along the Central Brazilian Coast: consequences on coastal plain construction. Anais da Acad Brasileira de Ciências 68:303–354Google Scholar
  70. Martinelli LA, Pessenda LCR, Espinoza E, Camargo PB, Telles EC, Cerri CC, Victoria RL, Aravena R, Richey J, Trumbore S (1996) Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia 106:376–381Google Scholar
  71. Martinelli LA, Victoria RL, Camargo PB, Piccolo MC, Mertes L, Richey JE, Devol AH, Forsberg BR (2003) Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrol Processes 17:1,419–1,430Google Scholar
  72. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302Google Scholar
  73. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org Geochem 27:213–250Google Scholar
  74. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289Google Scholar
  75. Miall AD (1978) Facies types and vertical profile models in braided river deposits: a summary. In: Miall AD (ed) Fluvial sedimentology. Canadian Society of Petroleum Geologists, Calgary, pp 597–604Google Scholar
  76. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chem 60:217–225Google Scholar
  77. Miranda MCC, Rossetti DF, Pessenda LCR (2009) Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil): facies, δ 13C, δ 15N and C/N. Palaeogeogr Palaeoclim Palaeoecol 282:19–31Google Scholar
  78. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the Tropical Atlantic and South America. J Climate 9:2464–2479Google Scholar
  79. Pessenda LCR, Camargo PB (1991) Datação radiocarbônica de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixo nível de radiação de fundo. Quim Nova 14:98–103Google Scholar
  80. Pessenda LCR, Valencia EPE, Martinelli LA (1996) 14C measurements in tropical soil developed on basic rocks. Radiocarbon 38:203–208Google Scholar
  81. Pessenda LCR, Gomes BM, Aravena R, Ribeiro AS, Boulet R, Gouveia SEM (1998a) The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region. Holocene 8:631–635Google Scholar
  82. Pessenda LCR, Gouveia SEM, Aravena R, Gomes BM, Boulet R, Ribeiro AS (1998b) 14C dating and stable carbon isotopes of soil organic matter in forest savanna boundary areas in the southern Brazilian Amazon region. Radiocarbon 40:1,013–1,022Google Scholar
  83. Pessenda LCR, Boulet R, Aravena R, Rosolen V, Gouveia SEM, Ribeiro AS, Lamotte M (2001) Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11:250–254Google Scholar
  84. Pessenda LCR, Ribeiro AS, Gouveia SEM, Aravena R, Boulet R, Bendassoli JA (2004) Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic mater. Quat Res 62:183–193Google Scholar
  85. Pessenda LCR, Gouveia SEM, De Oliveira PE, Aravena R (2010) Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeogr Palaeoclim Palaeoecol 297:597–608Google Scholar
  86. Peterson BJ, Fry B, Hullar M, Saupe S, Wright R (1994) The distribution and stable carbon isotope composition of dissolved organic carbon in estuaries. Estuaries 17:111–121Google Scholar
  87. Raymond PA, Bauer JE (2001) Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32:469–485Google Scholar
  88. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal. kyear b.p. Radiocarbon 46:1,029–1,058Google Scholar
  89. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Mccormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50000 years cal. b.p. Radiocarbon 51:1,111–1,150Google Scholar
  90. Rosario RP, Bezerra MOM, Vinzon SB (2009) Dynamics of the saline front in the northern Channel of the Amazon River—influence of fluvial flow and tidal range (Brazil). J Coast Res 2:503–514Google Scholar
  91. Rossetti DF, Goes AM, Valeriano MM, Miranda MCC (2007) Quaternary tectonics in a passive margin: marajó Island, northern Brazil. J Quat Sci 22:1–15Google Scholar
  92. Rossetti DF, Valeriano MM, Goes AM, Thales M (2008) Palaeodrainage on Marajó Island, northern Brasil, in relation to Holocene relative sea-level dynamics. Holocene 18:1–12Google Scholar
  93. Rossetti DF, Souza LSB, Prado R, Elis VR (2012) Neotectonics in the northern equatorial Brazilian margin. J South American Earth Sci 37:175–190Google Scholar
  94. Roubik DW, Moreno JE (1991) Pollen and Spores of Barro Colorado Island, vol 36. Missouri Botanical Garden, St. LouisGoogle Scholar
  95. Rull V, Vegas-Vilarrùbia T, Espinoza NP (1999) Palynological record an early-mid Holocene mangrove in eastern Venezuela: implications for sea-level rise and disturbance history. J Coast Res 15:496–504Google Scholar
  96. Santos MLS, Medeiros C, Muniz K, Feitosa FAN, Schwamborn R, Macedo SJ (2008) Influence of the Amazon and Pará Rivers on water composition and phytoplankton biomass on the adjacent shelf. J Coast Res 24:585–593Google Scholar
  97. Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulphur, hydrogen and nitrogen. In: Scholf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 149–186Google Scholar
  98. Semeniuk V (1994) Predicting the effect of sea-level rise on mangroves in northwestern Australia. J Coast Res 10:1,050–1,076Google Scholar
  99. Sifeddine A, Bertrand P, Fournier M, Martin L, Servant M, Soubiès F, Suguio K, Turcq B (1994) La sédimentation organique lacustre en milieu tropical humide (Carajás, Amazonie orientale, Brésil): relation avec les changements climatiques au cours des 60,000 dernières années. Bull de La Société Geologique de France 165:613–621Google Scholar
  100. Sifeddine A, Marint L, Turcq B, Volkmer-Ribeiro C, Soubiès F, Cordeiro RC, Suguio K (2001) Variations of the Amazonian rainforest environment: a sedimentological record covering 30000 years. Palaeogeogr Palaeoclim Palaeoecol 168:221–235Google Scholar
  101. Smith CB, Cohen MCL, Pessenda LCR, França M, Guimarães JTF, Rossetti DF (2011) Holocene coastal vegetation changes at the mouth of the Amazon River. Rev Palaeobot Palynol 168:21–30Google Scholar
  102. Smith CB, Cohen MCL, Pessenda LCR, França MC, Guimarães JTF (2012) Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari-Northern Brazil. Catena 90:26–38Google Scholar
  103. Souza Filho PWM, Martins ESF, Costa FR (2006) Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat, Brazilian Amazon: a remote sensing data approach. Ocean Coast Manag 49:462–475Google Scholar
  104. Spenceley AP (1982) Sedimentation patterns in a mangal on Magnetic Island near Townsville, North Queensland, Australia. Singap. J Trop Geogr 3:100–107Google Scholar
  105. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:614–621Google Scholar
  106. Stuiver M, Reimer P, Braziunas TF (1998) High precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1,127–1,151Google Scholar
  107. Suguio K, Martin L, Bittencourt ACSP, Dominguez JML, Flexor JM, Azevedo AEG (1985) Flutuações do Nível do Mar durante o Quaternário Superior ao longo do Litoral Brasileiro e suas Implicações na Sedimentação Costeira. Revista Brasileira de Geociência 15:273–286Google Scholar
  108. Sukigara C, Saino T (2005) Temporal variations of δ13C and δ15N in organic particles collected by a sediment trap at time-series station off the Tokyo Bay. Continental Shelf Res 25:1,749–1,767Google Scholar
  109. Thornton SF, McManus J (1994) Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal Shelf Sci 38:219–233Google Scholar
  110. Tomazelli LJ (1990) Contribuicão ao Estudo dos Sistemas Deposicionais Holocênicos do Nordeste da Província Costeira do Rio Grande do Sul, com Ênfase no Sistema Eólico, Doctoral Thesis (Tese de Doutorado). Universidade Federal do Rio Grande do Sul, Porto AlegreGoogle Scholar
  111. Tyson RV (1995) Sedimentary organic matter: organic facies and palynofacies. Chapman and Hall, LondonGoogle Scholar
  112. Vedel V, Behling H, Cohen MCL, Lara RJ (2006) Holocene mangrove dynamics and sea-level changes in Taperebal, northeastern Pará State, northern Brazil. Veget Hist Archaeobot 15:115–123Google Scholar
  113. Vinzon BS, Vilela CPX, Pereira LCC (2008) Processos físicos na Plataforma Continental Amazônica. Relatório-Técnico, Potenciais Impactos Ambientais do Transporte de Petróleo e Derivados na Zona Costeira Amazônico. Petrobrás, BrasilGoogle Scholar
  114. Walker RG (1992) Facies, facies models and modern stratigrahic concepts. In: Walker RG, James NP (eds) Facies models—response to sea level change. Geological Association of Canada, Ontario, pp 1–14Google Scholar
  115. Weng C, Bush MB, Athens JS (2002) Two histories of climate change and hydrarch succession in Ecuadorian Amazonia. Rev Palaeobot Palynol 120:73–90Google Scholar
  116. Weng C, Bush MB, Silman MR (2004) An elevation transect of modern pollen spectra from Amazonia to the high Andes, Peru. J Trop Ecol 20:113–124Google Scholar
  117. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392Google Scholar
  118. Wolanski E, Mazda Y, King B, Gay S (1990) Dynamics, flushing and trapping in Hinchinbrook channel, a giant mangrove swamp, Australia. Estuarine, Coastal Shelf Sci 31:555–579Google Scholar
  119. Woodroffe CD, Chappell J, Thom BG, Wallensky E (1989) Depositional model of a macrotidal estuary and floodplains, South Alligator River, Northern Australia. Sedimentology 36:737–756Google Scholar
  120. Xu Q, Tian F, Bunting MJ, Li Y, Ding W, Cao X, He Z (2012) Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China. Quat Sci Rev 37:81–91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marlon C. França
    • 1
    • 2
  • Mariah I. Francisquini
    • 4
  • Marcelo C. L. Cohen
    • 1
    • 3
  • Luiz C. R. Pessenda
    • 4
  1. 1.Post-Graduate Program of Geology and Geochemistry, Laboratory of Coastal DynamicsFederal University of ParáBelémBrazil
  2. 2.Federal Institute of ParáBelémBrazil
  3. 3.Faculty of OceanographyFederal University of ParáBelémBrazil
  4. 4.14C LaboratoryUniversity of São PauloPiracicabaBrazil

Personalised recommendations