Vegetation History and Archaeobotany

, Volume 23, Issue 5, pp 497–513 | Cite as

Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians

  • Eva Jamrichová
  • Petra Hájková
  • Michal Horsák
  • Eliška Rybníčková
  • Adam Lacina
  • Michal Hájek
Original Article


We explored interactions among human activities, landscape development and changes in biotic proxies in two small calcareous spring fens in the Slovak Eastern Carpathians. These date back to cal. a.d. 930. Results of pollen, plant macrofossil, and mollusc analyses were compared with the settlement history. The regional pollen record reflected historical events and changes in the settlement density very well at both study sites. The natural mixed fir-beech-spruce forests with fern undergrowth were suppressed and replaced by light-demanding trees in the periods of high human impact (e.g. Wallachian colonization). The study area was affected several times by wars and raids followed by a consequent decline in the settlement density. Some of these events are well reflected in the pollen records that document tree recovery and decline of cereals, weeds, and pasture indicators. In comparison, only some landscape changes were reflected in the local fen development. Both spring fens originated after deforestation, Roškovce around a.d. 1347 and Mirol'a around a.d. 929. The most pronounced change involving the water regime stabilization and undisturbed development of plant and mollusc communities took place after the decline in human impact. We conclude that humans were the main drivers of landscape transformation in the last millennium; they directly created spring-fen ecosystems through deforestation and influenced fen species composition through husbandry activities.


Forest development Multi-proxy Macrofossil Pollen Snail Spring fen 



We are grateful to Barbora Pelánková for help with the profile sampling and to Zuzana Formánková for laboratory work. We would like to thank Pim van der Knaap and an anonymous reviewer for useful critical comments and suggestions on the manuscript. The research was supported by the Grant Project GAČR P504/11/0429, institutional support of Masaryk University, and the long-term research development Project No. RVO 67985939.


  1. Anonymous (2011) Informačná databáza. Okres Svidník a Bardejov (Information database of Svidník and Bardejov). Regionálna rozvojová agentúra Svidník, pp 33–42Google Scholar
  2. Ausden M, Hall M, Pearson P, Strudwick T (2005) The effects of cattle grazing on tall-herb fen vegetation and molluscs. Biol Conserv 122:317–326CrossRefGoogle Scholar
  3. Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629CrossRefGoogle Scholar
  4. Behre KE (1988) The role of man in European vegetation history. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 633–672CrossRefGoogle Scholar
  5. Berggren G (1969) Atlas of seeds. Part 2 cyperaceae, vol 1969. Berlingska Boktryckeriet, LundGoogle Scholar
  6. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  7. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Arnold, LondonGoogle Scholar
  8. Birks HH, Birks HJB (2006) Multi-proxies studies in palaeolimnology. Veget Hist Archaeobot 15:235–251CrossRefGoogle Scholar
  9. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  10. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  11. Bronk Ramsey C (2013) OxCal 4.2.1. Accessed 4 March 2013
  12. Büntgen U, Brázdil R, Frank D, Esper J (2010) Three centuries of Slovakian drought dynamics. Clim Dyn 35:315–329CrossRefGoogle Scholar
  13. Büntgen U, Kyncl T, Ginzler Ch, Jacks DS, Esper J, Tegel W, Heusser KU, Kyncl J (2013) Filling the eastern European gap in millennium-long temperature reconstructions. PNAS 29:1,773–1,778Google Scholar
  14. Cappers TJ, Bekker RM, Jans JEA (2012) Digital seed atlas of the Netherlands, 2nd edn. Barkhuis and Groningen University Library, GroningenGoogle Scholar
  15. Chambers FM, Daniell JRG (2011) Regional palaeoecological data can provide a wide range of possible restoration scenarios for degraded moorland and bog habitats. PAGES news 19:45–47Google Scholar
  16. Diemer M, Oetiker K, Billeter R (2001) Abandonment alters community composition and canopy structure of Swiss calcareous fens. Appl Veg Sci 4:237–246CrossRefGoogle Scholar
  17. Dítě D, Hájek M, Hájková P (2007) Formal definitions of Slovakian mire plant associations and their application in regional research. Biologia 62:400–408CrossRefGoogle Scholar
  18. Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  19. Feurdean A (2010) Forest conservation in a changing world: natural or cultural? Example from the Western Carpathians forests, Romania. Studia UBB Geologia 55:45–48CrossRefGoogle Scholar
  20. Feurdean A, Willis KJ (2008) The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. Forest Ecol Manag 256:421–430CrossRefGoogle Scholar
  21. Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1:96–119CrossRefGoogle Scholar
  22. Foster DR, Hall B, Barry S, Clayden S, Parshall T (2002) Cultural, environmental, and historical controls of vegetation patterns and the modern conservation setting on the island of Martha’s Vineyard, USA. J Biogeogr 29:1,381–1,400Google Scholar
  23. Gardner A (2002) Neolithic to copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry records. Holocene 12:541–553CrossRefGoogle Scholar
  24. Goslar T, Ralska-Jasiewiczowa M, Geel B, Łącka B, Szeroczyńska K, Chróst L, Walanus A (1999) Anthropogenic changes in the sediment composition of Lake Gościąż (central Poland), during the last 330 years. J Paleolimnol 22:171–185CrossRefGoogle Scholar
  25. Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, SpringfieldGoogle Scholar
  26. Grootjans AP, Alserda A, Bekker REM, Janáková M, Kemmers RF, Madaras M, Stanová V, Ripka J, Van Delft B, Wołejko L (2005) Calcareous spring mires in Slovakia; Jewels in the crown of the mire kingdom. In: Steiner GM (ed) Mires from Siberia to Tierra del Fuego. Stapfia 85, Linz, pp 97–115Google Scholar
  27. Grootjans AP, Adema EB, Bleuten W, Joosten H, Madaras M, Janáková M (2006) Hydrological landscape settings of base rich fen mires and fen meadows: an overview. Appl Veget Sci 9:175–184CrossRefGoogle Scholar
  28. Güssewell S, Buttler A, Klötzli F (1998) Short-term and long-term effects of mowing on the vegetation of two calcareous fens. J Veget Sci 9:861–872CrossRefGoogle Scholar
  29. Hájek M, Hájková P, Rozbrojová Z (2008) Impact of changes in mowing regime on species composition of wet grasslands. In: Jongepierová I (ed) Grasslands of the White Carpathian Mountains (in Czech with English abstract). ZO CSOP, Veselí nad Moravou, pp 338–345Google Scholar
  30. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755CrossRefGoogle Scholar
  31. Hájková P, Hájek M (2011) Vegetace prameništ′ [Vegetation of springs]. In: Chytrý M (ed) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and Wetland Vegetation]. Academia, Praha, pp 580–613Google Scholar
  32. Hájková P, Hájek M, Kintrová K (2009) How can we effectively restore species richness and natural composition of a Molinia invaded fen? J Appl Ecol 46:417–425CrossRefGoogle Scholar
  33. Hájková P, Roleček J, Hájek M, Horsák M, Fajmon K, Polák M, Jamrichová E (2011) Prehistoric origin of extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts. Preslia 83:185–210Google Scholar
  34. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelánková B (2012) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41:690–706Google Scholar
  35. Horsák M (2003) How to sample mollusc communities in mires easily. Malacol Bohemoslov 2:11–14Google Scholar
  36. Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B (2013) Continuity and change in the vegetation of a Central European oakwood. Holocene 23:44–54CrossRefGoogle Scholar
  37. Jankovská V (1995) Forest composition changes in the Moravskoslezské Beskydy Mountains during the latest millennium—a palaeoecological study. Folia Geobot Phytotaxon 30:375–387CrossRefGoogle Scholar
  38. Jaworski A (1994) Hodowla lasu. Wymagania siedliskowe ważniejszych gatunków drzew leśnych oraz zasady ich odnawiania. Wyd. AR, KrakówGoogle Scholar
  39. Kačur T (2008) Roškovce. Excell enterprise, MichalovceGoogle Scholar
  40. Krippel E (1971) Postglaciálný vývoj vegetácie východného Slovenska [The postglacial development of vegetation of the Eastern Slovakia]. Geografický Časopis 23:225–241Google Scholar
  41. Kropilák M, Strhan M, Hudák J (eds) (1977) Vlastivedný slovník obcí na Slovensku, II časť [The National Historic Dictionary of Slovak Municipalities, Part 2]. VEDA, BratislavaGoogle Scholar
  42. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclim, Palaeoecol 1:13–37CrossRefGoogle Scholar
  43. Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. Holocene 17:1,185–1,196Google Scholar
  44. Lamentowicz M, Milecka K, Gałka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz L, Van der Knaap WO (2008) Climate and human induced hydrological change since a.d. 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38:214–229CrossRefGoogle Scholar
  45. Lindbladh M, Brunet J, Hannon G, Niklasson M, Eliasson P, Eriksson G, Ekstrand A (2007) Forest history as a basis for ecosystem restoration—a multi-disciplinary case-study in a south Swedish temperate landscape. Restor Ecol 15:284–295CrossRefGoogle Scholar
  46. Ložek V (1964) Quartärmollusken der Tschechoslowakei. ČSAV, PragueGoogle Scholar
  47. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The late maunder minimum (1675–1715)—a key period for studying decadal scale climatic change in Europe. Clim Chang 49:441–462CrossRefGoogle Scholar
  48. Majo J (2012) Historicko-demografický lexikón obcí Slovenska (1880–1910). Štruktúra obyvateľstva podľa materinského jazyka a náboženskej príslušnosti [The historical-demographic lexicon of the Slovak municipalities (1880–1910). Population structure in relation to mother language and religious affiliation]. Štatistický úrad Slovenskej republiky, pp 1–876. Accessed 25 Feb 2013
  49. Margielewski W, Michczyński A, Obidowicz A (2010) Records of the middle- and late Holocene palaeoenvironmental changes in the Pcim–Sucha landslide peat bogs (Beskid Makowski Mts., Polish Outher Carpathians). Geochronometria 35:11–23CrossRefGoogle Scholar
  50. Matthews JA, Briffa KR (2005) The “Little Ice Age”: re-evaluation of an evolving concept. Geogr Ann 87:17–36CrossRefGoogle Scholar
  51. Mauquoy D, Van Geel B (2007) Mire and peat macros. In: Elias SA (ed) Encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 2,315–2,336CrossRefGoogle Scholar
  52. Mitchell FJG, Cole E (1998) Reconstruction of long-term successional dynamics of temperate woodland in Bialowieża Forest, Poland. J Ecol 86:1,042–1,061CrossRefGoogle Scholar
  53. Možný M, Brázdil R, Dobrovolný P, Trnka M (2012) Cereal harvest dates in the Czech Republic between 1501 and 2008 as a proxy for March–June temperature reconstruction. Clim Chang 110:801–821CrossRefGoogle Scholar
  54. Murphy DJ (2007) People, plants, and genes: the story of crops and humanity. Oxford University Press, OxfordCrossRefGoogle Scholar
  55. Pfister C, Brázdil R (2006) Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s. Clim Past 2:115–129CrossRefGoogle Scholar
  56. Pokorný P (2005) Role of man in the development of Holocene vegetation in Central Bohemia. Preslia 77:113–128Google Scholar
  57. Pop I (2010) Malé dejiny Rusínov [Brief history of Rusyns]. Združenie inteligencie rusínov Slovenska, BratislavaGoogle Scholar
  58. Punt W, Clarke GCS (eds) (1984) The northwest European pollen flora, IV. Elsevier, Amsterdam, pp 155–363Google Scholar
  59. Rábik V (2012) Kapitoly z dejín osídlenia Slovenska v stredoveku I. Nemecké osídlenie I (Východné Slovensko) [Chapters from the history of the settlement of Slovakia in the Middle Ages I. The German settlement I (Eastern Slovakia)]. Filozofická fakulta trnavskej university v Trnave, Trnava, pp 48–61Google Scholar
  60. Ralska-Jasiewiczowa M (1980) Late-Glacial and Holocene vegetation of Bieszczady Mts. (Polish Eastern Carpathians). Państwowe Wydawnictwo Naukowe, Kraków, pp 3–192Google Scholar
  61. Reille M (1992) Pollen et spores d′Europe et d′Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  62. Reille M (1995) Pollen et spores d′Europe et d′Afrique du Nord. Supplement 1. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  63. Reille M (1998) Pollen et spores d′Europe et d′Afrique du Nord. Supplement 2. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  64. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal B.P. Radiocarbon 51:1,111–1,150Google Scholar
  65. Rybníček K, Rybníčková E (1995) Palaeoecological and phytosociological reconstruction of precultural vegetation in the Bílý Kříž, the Moravskoslezké Beskydy Mts., Slovak Republic. Veget Hist Archaeobot 4:161–170CrossRefGoogle Scholar
  66. Rybníček K, Rybníčková E (2008) Upper Holocene dry land vegetation in the Moravian–Slovakian borderland (Czech and Slovak Republics). Veget Hist Archaeobot 17:701–711CrossRefGoogle Scholar
  67. Rybníčková E, Hájková P, Rybníček K (2005) The origin and development of spring fen vegetation and ecosystems—palaeobotanical results. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens in the Western Part of the Carpathians. Palacký University, Olomouc, pp 63–68Google Scholar
  68. Schweingruber FH (1978) Microscopic wood anatomy. Swiss Federal Institute for Forest, Snow and Landscape Research, BirmensdorfGoogle Scholar
  69. Smith AJE (1996) The moss flora of Britain and Ireland, 5th edn. Cambridge University Press, CambridgeGoogle Scholar
  70. Stankoviansky M, Pišút P (2011) Geomorphic response to Little Ice Age in Slovakia. Geographia Polonica 84:127–146CrossRefGoogle Scholar
  71. Šumberová K, Lososová Z (2011) Vegetace jednoletých nitrofilných vlhkomilných bylin [Vegetation of annual nitrophilous wetland herbs]. In: Chytrý M (ed) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech republic 3. Aquatic and Wetland Vegetation]. Academia, Praha, pp 347–381Google Scholar
  72. Szczepanek K (2001) Anthropogenic vegetation changes in the region of the Dukla Pass, the Lower Beskid Mountains. Polska Akademia Umiejętności. Prace Komisji Prehistorii Karpat II, Kraków, pp 171–182Google Scholar
  73. Tasenkević LO, Bezusko LG (1982) Istoria rozvitki flori i rostitelnosti. In: Stojko SM (ed) Flora i rastitelnost Karpatskogo zapovidnika. Naukova Dumka, Kiiv, pp 174–177Google Scholar
  74. Troels-Smith J (1955) Characterization of unconsolidated sediments. Danm Geol Unders 4:1–73Google Scholar
  75. Uličný F (1990) Dejiny osídlenia Šarišskej župy [Settlement history of Saris County]. Východoslovenské vydavateľstvo, KošiceGoogle Scholar
  76. Uličný F (2001) Dejiny osídlenia Zemplínskej župy [Settlement history of Zemplin County]. Zemplínska spoločnosť, MichalovceGoogle Scholar
  77. Van Geel B, Bohncke SJ, Dee H (1980/1981) A palaeoecological study of an upper Late Glacial and Holocene sequence from “de Borchert”, the Netherlands. Rev Palaeobot Palynol 31:367–448Google Scholar
  78. Van Hoof TB, Bunnik FPM, Waucomont JGM, Kürschner WM, Visscher H (2006) Forest re-growth on medieval farmland after the Black Death pandemic—implication for atmospheric CO2 levels. Palaeogeogr Palaeoclim Palaeoecol 237:396–411CrossRefGoogle Scholar
  79. Vegas-Vilarrúbia T, Rull V, Montoya E, Safont E (2011) Quaternary palaeoecology and nature conservation: a general review and some examples from the Neotropics. Quat Sci Rev 30:2,361–2,388CrossRefGoogle Scholar
  80. Veski S, Koopel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia. J Biogeogr 32:1,473–1,488CrossRefGoogle Scholar
  81. Vizdal M (2003) Sprievodca pravekom východného Slovenska [Guide to prehistory of the Eastern Slovakia]. Metodicko-pedagogické centrum, PrešovGoogle Scholar
  82. Wacnik A (1995) The vegetation history of local flora and evidences of human activities recorded in the pollen diagrams from site Regetovka, NE Slovakia. Acta Palaeobot 35:253–274Google Scholar
  83. Wacnik A (2001) Late-Holocene history of the vegetation changes based on the pollen analysis of the deposits at Kružlová, Slovakia. In: Machnik J (ed) Archaeology and natural background of the Lower Beskid Mountains, Carpathians. Part I. Prace Komisji Prehistorii Karpat PAU II, Kraków, pp 127–135Google Scholar
  84. Willis KJ (1994) The vegetation history of the Balkans. Quat Sci Rev 13:769–788CrossRefGoogle Scholar
  85. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1,261–1,265Google Scholar
  86. Yeloff D, Van Geel B (2007) Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of a.d. 1347–52. J Biogeogr 34:575–582CrossRefGoogle Scholar
  87. Yu Z, Vitt DH, Campbell ID, Apps MJ (2003) Understanding Holocene peat accumulation pattern of continental fens in western Canada. Can J Bot 81:267–282CrossRefGoogle Scholar
  88. Žadanský J (2002) Vpád Tatárov na Zemplíne [The Tatar invasion in Zemplin]. Historická revue 7:4–5. (Accessed 25 Feb 2013); (Accessed 12 Nov 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Jamrichová
    • 1
    • 2
    • 3
  • Petra Hájková
    • 1
    • 2
  • Michal Horsák
    • 2
  • Eliška Rybníčková
    • 2
  • Adam Lacina
    • 2
  • Michal Hájek
    • 1
    • 2
  1. 1.Department of Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Botany, Faculty of SciencesCharles University in PraguePragueCzech Republic

Personalised recommendations