Vegetation History and Archaeobotany

, Volume 23, Issue 5, pp 607–613 | Cite as

Forage quality of leaf-fodder from the main broad-leaved woody species and its possible consequences for the Holocene development of forest vegetation in Central Europe

  • Pavla Hejcmanová
  • Michaela Stejskalová
  • Michal Hejcman
Original Article


Leaf-hay was the principal winter feed of livestock from the Neolithic until the first archaeological records of scythes dated to the Iron Age (700–0 b.c.). Despite the use of meadow hay, leaf-fodder remained an important winter supplement until the present. Archaeological evidence lists Quercus, Tilia, Ulmus, Acer, Fraxinus and Corylus as woody species harvested for leaf-fodder, while Fagus, Populus or Carpinus were rarely used. The aim of our study was to test whether the use of listed woody species followed the pattern of their forage quality (syn. nutritive value). In late May 2012, we collected leaf biomass at four localities in the Czech Republic and determined concentrations of N, P, K, Ca, Mg, neutral- and acid-detergent fibre and lignin. Species with leaves of low forage quality were Carpinus betulus, Fagus sylvatica and Quercus robur, species with leaves of intermediate quality were Corylus avellana and Populus tremula and species with leaves of high quality were Ulmus glabra, Fraxinus excelsior, Tilia cordata and Acer platanoides. Selective browsing and harvesting of high quality species Acer, Fraxinus, Tilia and Ulmus thus probably supported their decline in the Bronze and Iron ages and supported the expansion of Carpinus and Fagus. Our results indicate that our ancestors’ practice of exploiting woody species as leaf-hay for winter fodder followed their nutritive value.


Agricultural history Leaf-fodder Livestock feeding Nutritive value Prehistory 



The study was funded by a Grant from the Czech University of Life Sciences Prague CIGA 20114205.


  1. Akeret Ö, Jacomet S (1997) Analysis of plant macrofossils in goat/sheep faeces from the Neolithic lake shore settlement of Horgen Scheller-an indication of prehistoric transhumance? Veget Hist Archaeobot 6:235–239CrossRefGoogle Scholar
  2. Akeret Ö, Rentzel P (2001) Micromorphology and plant macrofossil analysis of cattle dung from the Neolithic lake shore settlement of Arbon Bleiche 3. Geoarchaeol 16:687–700CrossRefGoogle Scholar
  3. Akeret Ö, Hass JN, Leuzinger U, Jacomet S (1999) Plant macrofossils and pollen in goat/sheep faeces from the Neolithic lake-shore settlement Arbon Bleiche 3, Switzerland. Holocene 9:175–182CrossRefGoogle Scholar
  4. AOAC (1984) Official methods of analysis. Association of Official Agricultural Chemists, WashingtonGoogle Scholar
  5. Ash HB (1941) tr. Lucius Junius Moderatus Columella: On agriculture I. Harvard University Press, CambridgeGoogle Scholar
  6. Austad I (1988) Tree pollarding in Western Norway. In: Birks HH, Birks HJ, Kaland PE, Moe D (eds) The cultural landscape, past, present and future. Cambridge University Press, Cambridge, pp 13–29Google Scholar
  7. Austad I, Hauge L (2006) Pollarding in western Norway. 1er Colloque Europeen sur les trognes, 26–28 Oct, Vendome, FranceGoogle Scholar
  8. Balasse M, Boury L, Ughetto-Monfrin J, Tresset A (2012) Stable isotope insights (δ 18 O, δ 13 C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium b.c.): birth seasonality and winter leaf foddering. Envir Archaeol 17:29–44CrossRefGoogle Scholar
  9. Butler EJ (1963) The mineral element content of spring pasture in relation to the occurrence of grass tetany and hypomagnesaemia in dairy cows. J Agric Sci 60:329–340CrossRefGoogle Scholar
  10. Cheema UB, Younas M, Sultan JI, Virk MR, Tariq M, Waheed A (2011) Fodder tree leaves: an alternative source of livestock feeding. Adv Agr Bio 2:22–33Google Scholar
  11. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  12. Delhon C, Martin L, Argant J, Thiébault S (2008) Shepherds and plants in the Alps: multi-proxy archaeobotanical analysis of neolithic dung from “La Grande Rivoire” (Isère, France). J Archaeol Sci 35:2,937–2,952CrossRefGoogle Scholar
  13. Dreslerová D (2012) Forest in the prehistoric landscape II. Archeologické rozhledy 64:199–236Google Scholar
  14. Haas JN, Karg S, Rasmussen P (1998) Beech leaves and twigs used as a winter fodder: examples from historic and prehistoric times. Envir Archaeol 1:81–86CrossRefGoogle Scholar
  15. Halstead P (1998) Ask the fellows who lop the hay: leaf-fodder in the mountains of Northwest Greece. Rural Hist 9:21–234CrossRefGoogle Scholar
  16. Hejcman M, Pavlů V, Hejcmanová P, Gaisler J, Hakl J, Rauch O (2006) Farmer decision making and its effect on the subalpine grassland succession in the Giant Mountains, Czech Republic. Acta Soc Bot Pol 75:165–174CrossRefGoogle Scholar
  17. Hejcman M, Szaková J, Schellberg J, Tlustoš P (2010) The Rengen Grassland experiment: relationship between soil and biomass chemical properties, amount of elements applied, and their uptake. Plant Soil 333:163–179CrossRefGoogle Scholar
  18. Hejcman M, Strnad L, Hejcmanová P, Pavlů V (2012) Response of plant species composition, biomass production and biomass chemical properties to high N, P and K application rates in Dactylis glomerata- and Festuca arundinacea-dominated grassland. Grass Forage Sci 67:488–506CrossRefGoogle Scholar
  19. Hejcman M, Hejcmanová P, Pavlů V, Beneš J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363CrossRefGoogle Scholar
  20. Hooper WD, Ash HB (1935) Marcus Porcius Cato, on agriculture: Marcus Terentius Varro, on agriculture. Harvard University Press, LondonGoogle Scholar
  21. Howe JC, Barry TN, Popay AJ (1988) Voluntary intake and digestion of gorse (Ulex europeus) by goats and sheep. J Agric Sci 11:107–114CrossRefGoogle Scholar
  22. Hrevušová Z, Hejcman M, Pavlů VV, Hakl J, Klaudisová M, Mrkvička J (2009) Long-term dynamics of biomass production, soil chemical properties and plant species composition of alluvial grassland after the cessation of fertilizer application in the Czech Republic. Agr Ecosyst Envir 130:123–130CrossRefGoogle Scholar
  23. Isselstein J, Griffith BA, Pradel P, Venerus S (2007) Effects of livestock breed and grazing intensity on biodiversity and production in grazing systems. 1. Nutritive value of herbage and livestock performance. Grass Forage Sci 62:145–158CrossRefGoogle Scholar
  24. Iversen J (1973) The development of Denmark’s nature since the last glacial. Dan Geol Unders, Series V, 7-C:1–126Google Scholar
  25. Karg S (1998) Winter- and spring-foddering of sheep/goat in the bronze age site of Fiave-Carera, Northern Italy. Envir Archaeol 1:87–94CrossRefGoogle Scholar
  26. Kayser M, Isselstein J (2005) Potassium cycling and losses in grassland systems: a review. Grass Forage Sci 60:213–224CrossRefGoogle Scholar
  27. Kelly F (2000) Early farming: a study based mainly on the law-texts of the 7th and 8th centuries A.D. School of Celtic Studies, DublinGoogle Scholar
  28. Kobe KE, Lepczyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecol 86:2,780–2,792CrossRefGoogle Scholar
  29. Kudrna V (ed) (1998) Feed production and cattle nutrition (In Czech: Produkce krmiv a výživa skotu). Agrospoj, PrahaGoogle Scholar
  30. Kyselý R (2012) The palaeoeconomy of the Bohemian and Moravian Lengyel and Eneolithic periods from the perspective of archaeozoology. Památky Archeologické CIII:5–70Google Scholar
  31. Le Houerou HN (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Res Rehab 14:101–135CrossRefGoogle Scholar
  32. Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A (2013) Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agron 44:67–77CrossRefGoogle Scholar
  33. Magyari EK, Chapman J, Fairbairn AS, Francis M, De Guzman M (2012) Neolithic human impact on the landscapes of North-East Hungary inferred from pollen and settlement records. Veget Hist Archaeobot 21:279–302CrossRefGoogle Scholar
  34. Martin L (2011) Une bergerie néolithique dans le Vercors: analyse des macro-restes végétaux des “fumiers” fossiles de la Grande Rivoire (Isère, France). In: Wiethold J (ed) Carpologia : Articles réunis à la mémoire de Karen Lundström-Baudais. Actes de la table ronde de carpologues françaises, tenu à Bibracte, Centre archéologique européen, Glux-en-Glenne, 9–12 juin 2005. BIBRACTE 20. CAE europeen Mont-Beuvray, pp 27–38Google Scholar
  35. Martin L, Delhon C, Argant J, Thiebault S (2011) Un aperçu de l’élevage au Néolithique par l’archéobotanique. L’exemple d’une bergerie dans le nord du Vercors. In: Lefèvre C, Denis B (eds) Le mouton, de la domestication à l’élevage. Actes de la journée scientifique organisée par l’association L’Homme et l’Animal, société de recherche interdisciplinaire (HASRI) et la Société d’Ethnozootechnie. Ethnozootechnie 91:37–45Google Scholar
  36. Musonda K, Barry TN, McWilliam EL, Lopez-Villalobos N, Pomroy WE (2009) Grazing willow (Salix spp.) fodder blocks for increased reproductive rates and internal parasite control in mated hoggets. Anim Feed Sci Tech 150:46–61CrossRefGoogle Scholar
  37. Papachristou TG (1997) Intake, digestibility and nutrient utilization of oriental hornbeam and manna ash browse by goats and sheep. Small Rumin Res 23:91–98CrossRefGoogle Scholar
  38. Papachristou TG, Nastis AS (1993) Diets of goats grazing oak shrublands of varying cover in northern Greece. J Range Manage 46:220–226CrossRefGoogle Scholar
  39. Papachristou TG, Dziba LE, Provenza FD (2005) Foraging ecology of goats and sheep on wooded rangelands. Small Rumin Res 59:141–156CrossRefGoogle Scholar
  40. Pavlů V, Hejcman M, Pavlů L, Gaisler J, Nežerková P (2006) Effect of continuous grazing on forage quality, quantity and animal performance. Agric Ecosyst Envir 113:349–355CrossRefGoogle Scholar
  41. Pokorný P, Kuneš P (2005) Holocene acidification process recorded in three pollen profiles from Czech sandstone and river terrace environments. Ferrantia 44:101–107Google Scholar
  42. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  43. Rasmussen P (1989) Leaf-foddering of livestock in the Neolithic. Archaeobotanical evidence from Weier, Switzerland. J Dan Archeol 8:51–71Google Scholar
  44. Rasmussen P (1993) Analysis of goat/sheep faces from Egolzwil-3, Switzerland: evidence for branch and twig foddering of livestock in the Neolithic. J Archaeol Sci 20:479–502CrossRefGoogle Scholar
  45. Regnell M (2003). Charcoals from Uppåkra as indicators of leaf fodder. Centrality—Regionality 105–115Google Scholar
  46. Roothaert RL, Paterson RT (1997) Recent work on the production and utilization of tree fodder in East Africa. Anim Feed Sci Tech 69:39–51CrossRefGoogle Scholar
  47. Schibler J, Chaix L (1995) Wirtschaftliche Entwicklung aufgrund archäozoologischer Daten. In: Stöckli WE, Niffeler U, Gross-Klee E (eds) SPM II: Neolithikum—Néolitique—Neolitico. Schweizerische Gesellschaft für Ur- und Frühgeschichte, Basel, pp 97–118Google Scholar
  48. Shahack-Gross R (2011) Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. J Archaeol Sci 38:205–218CrossRefGoogle Scholar
  49. Slotte H (2001) Harvesting the leaf-hay shaped the Swedish landscape. Landscape Ecol 16:691–702CrossRefGoogle Scholar
  50. Smith J (2010) The history of temperate agroforestry. The Organic Research Centre. Elm Farm, Hamstead Marshall, p 17Google Scholar
  51. Swerczek TW (2007) Nitrate toxicity and sodium deficiency associated with hypomagnesemia, hypocalcemia and grass tetany syndrome in herbivores. Annual Growers Nutritional Mineral Meeting, MilanGoogle Scholar
  52. Tallowin JRB, Jefferson RG (1999) Hay production from lowland semi-natural grasslands: a review of implications for ruminant livestock systems. Grass Forage Sci 54:99–115CrossRefGoogle Scholar
  53. Ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca ( Microcomputer power
  54. Troels-Smith J (1960) Ivy, mistletoe and elm: climatic indicators, fodder plants. Dan Geol Unders Series 4:1–32Google Scholar
  55. Whitehead DC (1995) Grassland Nitrogen. CAB International, WallingfordGoogle Scholar
  56. Worrell MA, Clanton DC, Stroup WW, Nichols JT (1986) Effect of harvest date on meadow hay quality. I. Nutritional attributes, voluntary intake and rate of passage in growing cattle. J Anim Sci 63:1,527–1,537Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pavla Hejcmanová
    • 1
  • Michaela Stejskalová
    • 2
  • Michal Hejcman
    • 2
  1. 1.Faculty of Tropical AgriSciencesCzech University of Life SciencesPrague 6-SuchdolCzech Republic
  2. 2.Faculty of Environmental SciencesCzech University of Life SciencesPrague 6-SuchdolCzech Republic

Personalised recommendations