Vegetation History and Archaeobotany

, Volume 23, Issue 5, pp 479–496 | Cite as

Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps

  • Christoph Schwörer
  • Petra Kaltenrieder
  • Lukas Glur
  • Matthias Berlinger
  • Julie Elbert
  • Stephanie Frei
  • Adrian Gilli
  • Albert Hafner
  • Flavio S. Anselmetti
  • Martin Grosjean
  • Willy Tinner
Original Article


Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.


Palaeoecology Treeline Human impact Vegetation history Alps Afforestation 



We would like to thank Willi Tanner, Paul D. Henne, Camilla Calò, Nadine Berthel and Stefanie B. Wirth for help during the fieldwork, Flor Oberli for help in the lab, Erika Gobet, Jacqueline van Leeuwen and Ercolino Gatto for help during the pollen and macrofossil analyses and Alfred Bretscher, Heinz Wanner, Stefan Brönnimann, Pim van der Knaap and two anonymous reviewers for valuable comments. This study was funded by the Dr. Alfred Bretscher Foundation.


  1. Aerni K (1990) 1000 Jahre Siedlung und Verkehr im schweizerischen Alpenraum. Voraussetzungen und Ergebnisse. In: Aerni K, Egli HR, Fehn K (eds) Siedlungsprozesse an der Höhengrenze der Ökumene am Beispiel der Alpen. Bern, pp 9–42Google Scholar
  2. Arno SF, Hammerly RP (1984) Timberline. Mountain and arctic forest frontiers. The Mountaineers, SeattleGoogle Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170Google Scholar
  4. Berthel N, Schwörer C, Tinner W (2012) Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev Palaeobot Palynol 174:91–100. doi: 10.1016/j.revpalbo.2011.12.007 Google Scholar
  5. Beug H (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  6. Birks H, Birks H (2006) Multi-proxy studies in palaeolimnology. Veget Hist Archaeobot 15:235–251. doi: 10.1007/s00334-006-0066-6 Google Scholar
  7. Birks H, Bjune A (2010) Can we detect a west Norwegian tree line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veget Hist Archaeobot 19:325–340. doi: 10.1007/s00334-010-0256-0 Google Scholar
  8. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London, OrlandoGoogle Scholar
  9. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi: 10.1016/j.quageo.2010.01.002 Google Scholar
  10. Blarquez O, Carcaillet C (2010) Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS One 5:e12,480Google Scholar
  11. Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2009) Trees in the subalpine belt since 1,1700 cal. b.p.: origin, expansion and alteration of the modern forest. Holocene 20:139–146Google Scholar
  12. Borten-schlager S (2000) The Iceman’s environment. In: Borten-schlager S, Oeggl K (eds) The Iceman and his Natural Environment, vol 4. Springer, Vienna, pp 11–24Google Scholar
  13. Breckle S, Lawlor G, Lawlor D (2002) Walter’s vegetation of the Earth. The ecological systems of the geo-biosphere, 4th edn. Springer, BerlinGoogle Scholar
  14. Burga CA, Klötzli F, Grabherr G (2004) Gebirge der Erde: Landschaft, Klima, Pflanzenwelt. Ulmer, StuttgartGoogle Scholar
  15. CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, OCCC, ZürichGoogle Scholar
  16. Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1,346–1,357Google Scholar
  17. Colombaroli D, Beckmann M, van der Knaap WO, Curdy P, Tinner W (2013) Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming. Divers Distrib 19:157–170. doi: 10.1111/j.1472-4642.2012.00930.x Google Scholar
  18. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576Google Scholar
  19. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408. doi: 10.1007/s00334-010-0242-6 Google Scholar
  20. Curdy P (2007) Prehistoric settlement in middle and high altitudes in the Upper Rhone Valley (Valais-Vaud, Switzerland): a summary of twenty years of research. Preistoria alpina 42:99–108Google Scholar
  21. Das B, Vinebrooke RD, Sanchez-Azofeifa A, Rivard B, Wolfe AP (2005) Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: a novel approach to reconstructing historical changes in the trophic status of mountain lakes. Can J Fish Aquat Sci 62:1,067–1,078. doi: 10.1139/f05-016 Google Scholar
  22. David F (2010) Expansion of green alder (Alnus alnobetula [Ehrh] K. Koch) in the northern French Alps: a palaeoecological point of view. Comptes Rendus Biol 333:424–428. doi: 10.1016/j.crvi.2010.01.002 Google Scholar
  23. Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, de Natale A, Bader MY (2008) The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 259:17–34. doi: 10.1016/j.palaeo.2006.12.016 Google Scholar
  24. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, StuttgartGoogle Scholar
  25. Fall PL (1997) Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Geol Soc Am Bull 109:1,306–1,320Google Scholar
  26. Finsinger W, Tinner W (2005) Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297Google Scholar
  27. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi: 10.1111/j.1654-1103.2007.tb02571.x Google Scholar
  28. Gilli A, Anselmetti F, Glur L, Wirth S (2013) Lake Sediments as Archives of Recurrence Rates and Intensities of Past Flood Events. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones, vol 47. Springer, Dordrecht, pp 225–242Google Scholar
  29. Gobet E, Tinner W, Hochuli PA, van Leeuwen JFN, Ammann B (2003) Middle to late Holocene vegetation history of the upper Engadine (Swiss Alps): the role of man and fire. Veget Hist Archaeobot 12:143–163. doi: 10.1007/s00334-003-0017-4 Google Scholar
  30. Gobet E, Tinner W, Bigler C, Hochuli PA, Ammann B (2005) Early-Holocene afforestation processes in the lower subalpine belt of the Central Swiss Alps as inferred from macrofossil and pollen records. Holocene 15:672–686. doi: 10.1191/0959683605hl843rp Google Scholar
  31. Gosling WD, Bunting MJ (2008) A role for palaeoecology in anticipating future change in mountain regions? The paleoecological record from mountain regions open science conference, global change in mountain regions. Palaeogeogr Palaeoclimatol Palaeoecol 259(1):1–5. doi: 10.1016/j.palaeo.2007.10.017 Google Scholar
  32. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clima Change 2:111–115. doi: 10.1038/nclimate1329 Google Scholar
  33. Grosjean M, Suter PJ, Trachsel M, Wanner H (2007) Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations. J Quat Sci 22:203–207. doi: 10.1002/jqs.1111 Google Scholar
  34. Guthruf J, Zeh M, Guthruf-Seiler K (1999) Kleinseen im Kanton Bern. Haupt, BernGoogle Scholar
  35. Haas J, Richoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. Holocene 8:301–309. doi: 10.1191/095968398675491173 Google Scholar
  36. Hafner A (2009) Geschichte aus dem Eis: Archäologische Funde aus alpinen Gletschern und Eismulden. Mitt Naturf Ges Bern 66:159–171Google Scholar
  37. Hafner A (2012) Archaeological discoveries on Schnidejoch and at other ice sites in the European Alps. Arctic 65:189–202Google Scholar
  38. Hafner A, Schnidejoch et Lötschenpass (2008) trouvailles romaines sur deux cols des Alpes bernoises occidentales. In: Vesan EM (ed) Alpis Poenina, Grand Saint-Bernard: une voie à travers l’Europe. Séminaire de Clôture, 11/12 avril 2008, Fort de Bard (Vallée d’Aoste). Projet Interreg III A Italie-Suisse 2000–2006, pp 477–486Google Scholar
  39. Harsch MA, Hulme PE, McGlone, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1,040–1,049. doi: 10.1111/j.1461-0248.2009.01355.x Google Scholar
  40. Heegaard E, Birks H, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi: 10.1191/0959683605hl836rr Google Scholar
  41. Heggen Presthus M, Birks HH, Heiri O, Grytnes J, Birks HJ (2012) Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains? J Paleolimnol 48:669–691. doi: 10.1007/s10933-012-9637-y Google Scholar
  42. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44. doi: 10.1002/jqs.895 Google Scholar
  43. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi: 10.1023/A:1008119611481 Google Scholar
  44. Heiri O, Lotter AF, Hausmann S, Kienast F (2003a) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484Google Scholar
  45. Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003b) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m a.s.l.). Palaeogeogr Palaeoclimatol Palaeoecol 189:35–53Google Scholar
  46. Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38:933–949. doi: 10.1111/j.1365-2699.2010.02460.x Google Scholar
  47. Holtmeier F (2009) Mountain timberlines: Ecology, patchiness, and dynamics, 2nd edn. Springer, DordrechtGoogle Scholar
  48. Horrocks M, Ogden J (2000) Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the Subalpine zone on Mt Hauhungatahi, Tongariro National Park, New Zealand. Holocene 10:61–73. doi: 10.1191/095968300667751080 Google Scholar
  49. IPCC (2007) Climate Change 2007. The physical science basis: working group I contribution to the 4th Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  50. Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16:697–704. doi: 10.1191/0959683606hl964rp Google Scholar
  51. Körner C (2003) Alpine plant life: Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  52. Körner C (2012) Alpine treelines. Springer, BaselGoogle Scholar
  53. Landolt E (2003) Unsere Alpenflora, 7th edn. SAC-Verlag, BernGoogle Scholar
  54. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, JenaGoogle Scholar
  55. Lang G, Tobolski K (1985) Hobschensee: late-glacial and Holocene environments of a lake at the timberline in the Central Swiss Alps. In: Lang G (ed) Swiss lake and mire environments during the last 15 000 years. Cramer, Vaduz, pp 273–336Google Scholar
  56. Larocque-Tobler I, Heiri O, Wehrli M (2010) Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. J Paleolimnol 43:649–666. doi: 10.1007/s10933-009-9358-z Google Scholar
  57. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. A&A 428:261–285. doi: 10.1051/0004-6361:20041335 Google Scholar
  58. Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat Sci Rev 25:2,780–2,805. doi: 10.1016/j.quascirev.2006.06.007 Google Scholar
  59. Lauber K, Wagner G, Gygax A (2012) Flora Helvetica, 5th edn. Haupt/Stuttgart, Bern/WienGoogle Scholar
  60. Legendre P, Birks HJB (2012) From Classical to Canonical Ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Springer, Dordrecht, pp 201–248Google Scholar
  61. Leonelli G, Pelfini M, Di Morra Cella U, Garavaglia V (2011) Climate Warming and the Recent Treeline Shift in the European Alps: the Role of Geomorphological Factors in High-Altitude Sites. Ambio 40:264–273. doi: 10.1007/s13280-010-0096-2 Google Scholar
  62. Lévesque PEM, Dinel H, Larouche A (1988) Guide to the identification of plant macrofossils in Canadian peatlands. Land Resource Research Centre, Research Branch, Agriculture Canada, Ottawa, OntGoogle Scholar
  63. Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361Google Scholar
  64. Lotter A, Heiri O, Hofmann W, van der Knaap W, van Leeuwen J, Walker I, Wick L (2006) Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veget Hist Archaeobot 15:295–307Google Scholar
  65. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. The record of human/climate interaction in lake Sediments. Quat Int 113:65–79. doi: 10.1016/S1040-6182(03)00080-6 Google Scholar
  66. Magny M, Bossuet G, Ruffaldi P, Leroux A, Mouthon J (2011) Orbital imprint on Holocene palaeohydrological variations in west-central Europe as reflected by lake-level changes at Cerin (Jura Mountains, eastern France). J Quat Sci 26:171–177. doi: 10.1002/jqs.1436 Google Scholar
  67. Markgraf V (1970) Palaeohistory of the spruce in Switzerland. Nature 228:249–251. doi: 10.1038/228249a0 Google Scholar
  68. MeteoSchweiz (2005) Klimadiagramme und -normwerte an Stationen. Accessed 16 Jan 2013
  69. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  70. Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J (2003) Origin and migration of the alpine iceman. Science 302:862–866. doi: 10.1126/science.1089837 Google Scholar
  71. Nicolussi K, Kaufmann M, Patzelt G, van der Plicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234. doi: 10.1007/s00334-005-0013-y Google Scholar
  72. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. doi: 10.1126/science.1219033 Google Scholar
  73. Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord, 2nd edn. Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  74. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 years cal b.p. Radiocarbon 51(4):1111–1150Google Scholar
  75. Rein B, Sirocko F (2002) In-situ reflectance spectroscopy: analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954. doi: 10.1007/s00531-002-0264-0 Google Scholar
  76. Reitmaier T (ed) (2012) Letzte Jäger, erste Hirten : hochalpine Archäologie in der Silvretta. Archäologie in Graubünden. Amt für Kultur, Archäologischer Dienst Graubünden (ADG), ChurGoogle Scholar
  77. Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene thermal maximum. Quatern Sci Rev 48:7–19. doi: 10.1016/j.quascirev.2012.05.022 Google Scholar
  78. Rey F, Schwörer C, Gobet E, Colombaroli D, van Leeuwen JFN, Schleiss S, Tinner W (2013) Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. Holocene. doi: 10.1177/0959683613489585 Google Scholar
  79. Röpke A, Stobbe A, Oeggl K, Kalis AJ, Tinner W (2011) Late-Holocene land-use history and environmental changes at the high altitudes of St Antönien (Switzerland, Northern Alps): combined evidence from pollen, soil and tree-ring analyses. Holocene 21:485–498. doi: 10.1177/0959683610385727 Google Scholar
  80. Samartin S, Heiri O, Vescovi E, Brooks SJ, Tinner W (2012) Lateglacial and early Holocene summer temperatures in the southern Swiss Alps reconstructed using fossil chironomids. J Quat Sci 27:279–289. doi: 10.1002/jqs.1542 Google Scholar
  81. Saunders KM, Grosjean M, Hodgson DA (2013) A 950 year temperature reconstruction from Duckhole Lake, southern Tasmania, Australia. Holocene. doi: 10.1177/0959683612470176 Google Scholar
  82. Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120. doi: 10.1016/S0031-0182(02)00511-4 Google Scholar
  83. Schoch WH (1988) Botanische Makroreste: Ein Atlas zur Bestimmung häufig gefundener und ökologisch wichtiger Pflanzensamen. Haupt, BernGoogle Scholar
  84. Seppä H, Nyman M, Korhola A, Weckstrom J (2002) Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. J Quat Sci 174:287–301. doi: 10.1002/jqs.678 Google Scholar
  85. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2010) Experimental evidence for herbivore limitation of the treeline. Ecology 91:3,413–3,420. doi: 10.1890/09-2300.1
  86. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2011) Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. For Ecol Manag 261:1,344–1,352. doi: 10.1016/j.foreco.2011.01.017 Google Scholar
  87. Spindler K (2005) Transhumanz. Preistoria alpina 39:219–225Google Scholar
  88. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  89. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. In: Begon M, Fitter A, Ford E, Macfadyen A (eds) Advances in ecological research, vol 18. Academic Press, London, pp 271–317Google Scholar
  90. Ter Braak CJF, Šmilauer P (2002) CANOCO. Software for Canonical Community Ordination. Microcomputer Power, Ithaca, NY, USAGoogle Scholar
  91. Theurillat J, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. doi: 10.1023/A:1010632015572 Google Scholar
  92. Tinner W (2007) Treeline studies. In: Elias SA (ed) Encyclopedia of Quaternary science, 1st edn. Elsevier, Amsterdam, Boston, pp 2,374–2,384Google Scholar
  93. Tinner W, Hu F (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505Google Scholar
  94. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947Google Scholar
  95. Tinner W, Theurillat J (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169Google Scholar
  96. Tinner W, Ammann B, Germann P (1996) Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arct Alp Res 28:131–147Google Scholar
  97. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226. doi: 10.1191/0959683605hl892rp Google Scholar
  98. Tinner W, Bigler C, Gedye S, Gregory-Eaves I, Jones RT, Kaltenrieder P, Krähenbühl U, Hu FS (2008a) A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Ecology 89:729–743. doi: 10.2307/27651595 Google Scholar
  99. Tinner W, Nielsen EH, Lotter AF (2008b) Evidence for late-mesolithic agriculture? A reply to Karl-Ernst Behre. Quatern Sci Rev 27(13–14):1,468–1,470Google Scholar
  100. Tobolski K, Ammann B (2000) Macrofossils as records of plant responses to rapid late glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr Palaeoclimatol Palaeoecol 159:251–259Google Scholar
  101. Trachsel M, Grosjean M, Schnyder D, Kamenik C, Rein B (2010) Scanning reflectance spectroscopy (380–730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44:979–994. doi: 10.1007/s10933-010-9468-7 Google Scholar
  102. Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Springer, BerlinGoogle Scholar
  103. Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffnungen der mitteleuropäischen Coniferen. Flora 140:523–533Google Scholar
  104. Valsecchi V, Tinner W (2010) Vegetation responses to climatic variability in the Swiss Southern Alps during the Misox event at the early-mid Holocene transition. J Quatern Sci 25(8):1,248–1,258. doi: 10.1002/jqs.1403 Google Scholar
  105. Valsecchi V, Carraro G, Conedera M, Tinner W (2010) Late-Holocene vegetation and land-use dynamics in the Southern Alps (Switzerland) as a basis for nature protection and forest management. Holocene 20:483–495Google Scholar
  106. Vescovi E, Ravazzi C, Arpenti E, Finsinger W, Pini R, Valsecchi V, Wick L, Ammann B, Tinner W (2007) Interactions between climate and vegetation during the lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669. doi: 10.1016/j.quascirev.2007.03.005 Google Scholar
  107. von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to ad 850. Holocene 19(6):873–881. doi: 10.1177/0959683609336573 Google Scholar
  108. von Gunten L, Grosjean M, Kamenik C, Fujak M, Urrutia R (2012) Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: methods and case studies. J Paleolimnol 47(4):583–600. doi: 10.1007/s10933-012-9582-9 Google Scholar
  109. Walther G, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16(5):541–548. doi: 10.1111/j.1654-1103.2005.tb02394.x Google Scholar
  110. Wegmüller S, Lotter AF (1990) Palynostratigraphische Untersuchungen zur spät-und postglazialen Vegetationsgeschichte der nordwestlichen Kalkvoralpen. Botanica Helvetica 100(1):37–73Google Scholar
  111. Welten M (1982) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen. Bern-Wallis, Birkhäuser, BaselGoogle Scholar
  112. Whitlock C (1993) Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Parks. Ecol Monogr 63(2):173. doi: 10.2307/2937179 Google Scholar
  113. Whitlock C, Larsen C (2002) Charcoal as a fire proxy. In: Smol J, Birks H, Last W, Bradley R, Alverson K (eds) Tracking environmental change using lake sediments. Springer, Netherlands, pp 75–97Google Scholar
  114. Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arct Alp Res 29:445–458Google Scholar
  115. Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30(3):261–272. doi: 10.1023/A:1026088914129 Google Scholar
  116. Wolfe AP, Vinebrooke RD, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36(1):91–100. doi: 10.1007/s10933-006-0006-6 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Schwörer
    • 1
    • 2
  • Petra Kaltenrieder
    • 1
    • 2
  • Lukas Glur
    • 3
  • Matthias Berlinger
    • 1
  • Julie Elbert
    • 2
    • 4
  • Stephanie Frei
    • 1
  • Adrian Gilli
    • 5
  • Albert Hafner
    • 2
    • 6
  • Flavio S. Anselmetti
    • 2
    • 3
    • 7
  • Martin Grosjean
    • 2
    • 4
  • Willy Tinner
    • 1
    • 2
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Departement of Surface Waters – SedimentologySwiss Federal Institute of Aquatic Sciences, EawagDübendorfSwitzerland
  4. 4.Institute of GeographyUniversity of BernBernSwitzerland
  5. 5.Geological InstituteETH ZurichZurichSwitzerland
  6. 6.Department of Prehistory, Institute of Archaeological SciencesUniversity of BernBernSwitzerland
  7. 7.Institute of Geological SciencesUniversity of BernBernSwitzerland

Personalised recommendations