Abstract
The exploitation of copper ore deposits of the northern Greywacke Zone was initiated by the implementation of metallurgic technologies in the Eastern Alps thousands of years ago. This multi-proxy study aimed to detect prehistoric mining phases in the vicinity of a prominent copper ore deposit in the Lower Inn Valley. Therefore we studied a peat core from a fen using pollen, micro charcoal and geochemical analyses. In the same fen, an archaeological investigation revealed an ore beneficiation site, well dated by dendrochronological analysis to the Late Bronze Age (9th century b.c.). First hints of mining activities reflected by the occurrence of anthropogenic indicators in the pollen diagram, associated with elevated metal values, at the beginning of the Bronze Age might result from early mineral prospecting and metallurgical experiments around the use of fahlore. The local ore deposit was then abandoned until during the Bronze Age mining activities started to increase. This is reflected by an expansion of the pioneer species Pinus and Larix on mine spoil heaps in the proximity. Concomitantly metal ratios and micro charcoal increase. From about 1000 to 850 b.c. a strong impact of mining activities is displayed in the multi-proxy data. The local forest was partly cleared on and in the vicinity of the fen. According to dendrochronological data the ore beneficiation plant was in use from about 900 to 870 b.c. Until about 700 b.c. another period with moderate impact by mining activities in the further vicinity of the fen shows up.
This is a preview of subscription content, access via your institution.







References
Ambert P, Bouquet L, Guendon J-L, Mischka D (2005) La Capitelle du Broum (district minier de Cabrières-Péret, Hérault): établissement industriel de l`aurore de la métallurgie francaise (3100-2400 BC). In: Ambert P, Vaquer J (eds) La première métallurgie en France et dans les pays limitromorphes. Mémoire 37 de la Société Préhistorique Francaise, pp 83–96
Barge H (2003) Saint-Véran, la montagne, le cuivre, et l`homme. I. Mine et métallurgie préhistoriques dans les Hautes-Alpes, Theix
Baron S, Lavoie M, Ploquin A, Carigan J, Pulido M, De Beaulieu J-L (2005) Records of metal workshops in peat deposits: history and environmental impact on the Mount Loze`re Massif, France. Envir Sci Technol 39:5,131–5,140
Bartelheim M, Eckstein K, Huijsmans M, Krauss R, Pernicka E (2002) Kupferzeitliche Metallgewinnung in Brixlegg, Österreich. In: Bartelheim M, Pernicka E, Krauss R (eds) Die Anfänge der Metallurgie in der Alten Welt (The beginnings of metallurgy in the Old World). Marie Leidorf Verlag, Rahden (Westf), pp 33–82
Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München
Breitenlechner E, Hilber M, Lutz J, Kathrein Y, Unterkircher A, Oeggl K (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Archaeol Sci 37:1,458–1,467
Bronk Ramsey C. (2005). Oxcal v3.10. http://c14.arch.ox.ac.uk/embed.php?File=oxcal.html
Cloy JM, Farmer JG, Graham MC, MacKenzie AB, Cook GT (2005) A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog. Scotland J Envir Monit 7:1,137–1,147
Cushing EJ (1967) Late-Wisconsin pollen stratigraphy and the glacial sequence in Minnesota. In: Cushing EJ, Wright HE (eds) Quaternary palaeoecology. Yale University Press, New Haven, pp 59–88
Dörfler W (1995) Versuch einer Modellierung des Energieflusses und des Rohstoffverbrauchs während der römisch-kaiserzeitlichen Eisenverhüttung in Joldelund. Ldkr. Nordfriesland. Probl Küstenforsch südl Nordseegebiet 23:175–185
Ejarque A, Julià R, Riera S, Palet JM, Orengo HA, Miras Y, Gascón C (2009) Tracing the history of highland human management in the eastern pre-pyrenees: an interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. Holocene 19:1,241–1,255
Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54:561–569
Faegri K, Iversen J (1993) Bestimmungsschlüssel für die nordwesteuropäische Pollenflora. Fischer, Jena
Fliri F (1975) Das Klima der Alpen im Raume von Tirol. Monographien zur Landeskunde Tirols, Innsbruck
Gelmini G (1997) Programm zur grafischen Darstellung von Pollenzähldaten, Diploma thesis, Universität Innsbruck, Innsbruck
Goldenberg G, Rieser B (2004) Die Fahlerzlagerstätten von Schwaz/Brixlegg (Nordtirol). Ein weiteres Zentrum urgeschichtlicher Kupferproduktion in den österreichischen Alpen. In: Weisgerber G, Goldenberg G (eds) Alpenkupfer-Rame delle Alpi. Der Anschnitt, Beiheft 17:37–52
Goldenberg G, Breitenlechner E, Deschler-Erb S, Hanke K, Hiebel G, Hüster-Plogmann H, Hye S, Klaunzer M, Kovács K, Krismer M, Lutz J, Maass A, Moser M, Nicolussi K, Oeggl K, Pernicka E, Pichler T, Pöllath N, Schibler J, Staudt M, Stopp B, Thurner A, Töchterle U, Tomedi G, Tropper P, Vavtar F Weinold T (2012) Prähistorischer Kupfererzbergbau im Maukental bei Radfeld/Brixlegg. In: Goldenberg G, Töchterle U, Oeggl K, Krenn-Leeb A (eds) Forschungsprogramm HiMAT-Neues zur Bergbaugeschichte der Ostalpen. Archäologie Österreichs Spezial 4:59–110
Gstrein P (1988) Geologie, Mineralogie und Bergbau des Gebietes um Brixlegg. In: Landmann S (eds) Brixlegg eine Tiroler Gemeinde im Wandel der Zeit. Brixlegg, pp 11–31
Haas JN (1996) Neorhabdocoela oocytes—palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Rev Palaeobot Palynol 91:371–382
Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110
Höppner B, Bartelheim M, Huijsmans M, Krauss R, Martinek KP, Pernicka E, Schwab R (2005) Prehistoric copper production in the Inn Valley (Austria), and the earliest copper in central Europe. Archaeometry 47:293–315
Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe 0–13,000 years ago. Cambridge University Press, Cambridge
Ivanov KE (1981) Water movement in Mirelands. Academic Press, New York
Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT). Accessed http://srtm.csi.cgiar.org
Jouffroy-Bapicot I, Pulido M, Baron S, Galop D, Monna F, Lavoie M, Ploquin A, Petit Ch, de Beaulieu J-L, Richard H (2007) Environmental impact of early palaeometallurgy: pollen and geochemical analyses. Veget Hist Archaeobot 16:251–258
Juggins S (2007) C2 Version 1.5 User guide. software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne
Klaunzer M, Goldenberg G, Hye S, Staudt M, Töchterle U, Tomedi G (2010) Prehistoric Fahlore mining and metallurgy in the Mauken valley, Radfeld/Brixlegg, North-Tyrol. In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European History—proceedings of the 1st mining in European history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 345–349
Küster H, Rehfuess K-E (1997) Pb and Cd concentrations in a Southern Bavarian bog profile and the history of vegetation as recorded by pollen analysis. Water Air Soil Pollut 100:379–386
Le Roux G, Weiss D, Grattan J, Givelet N, Krachler M, Cheburkin A, Rausch N, Kober B, Shotyk W (2004) Identifying the sources and timing of ancient and medieval atmospheric lead pollution in England using a peat profile from Lindow Bog, Manchester. J Environ Monit 6:502–510
Maggi R, Pearce M (2005) Mid fourth-millenium copper mining in Liguria, north-west Italy: the earliest known copper mines in Western Europe. Antiquity 79:66–77
Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79
Mangerud J, Skreden SA (1972) Fossil ice wedges and ground wedges in sediments below till at Voss, Western Norway. Nor Geol Tidsskr 52:73–96
Marshall PD, O’Hara SL, Ottaway BS (1999) Early copper metallurgy in Austria and methods of assessing its impact on the environment. In: Hauptmann A, Pernicka E, Rehren T, Yalçin Ü (eds) The beginnings of metallurgy, vol 9. Der Anschnitt, Beiheft, pp 255–264
Martini IP, Martínez Cortizas A, Chesworth W (2006) Peatlands—evolution and records of environmental and climate changes. Elsevier, Oxford
Meisel K, Schiechtl HM and Stern R (1984) Karte der aktuellen Vegetation von Tirol 1/100 000. 10. Teil: Blatt 3, Karwendelgebirge-Unterinntal. Documents de cartographie écologique 27:65–84
Mighall TM, Chambers FM (1993) Early mining and metalworking: its impact on the environment. Hist Metal 27:71–83
Mighall TM, Chambers FM (1997) Early ironworking and its impact on the environment: palaeoecological evidence from Bryn y Castell hillfort, Snowdonia, north Wales. Proc Prehist Soc 63:199–219
Mighall TM, Timberlake S, Grattan JP, Forsyth S (2000) Bronze Age lead mining at Copa Hill—fact or fantasy? Historical Metallurgy 34:1–12
Mighall TM, Abrahams PW, Grattan JP, Hayes D, Timberlake S, Forsyth S (2002a) Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, U.K. Sci Total Environ 292:69–80
Mighall TM, Timberlake S, Clark SHE, Caseldine AE (2002b) A palaeoenvironmental investigation of sediments from the prehistoric mine of Copa Hill, Cwmystwyth, mid-Wales. J Archaeol Sci 29:1,161–1,188
Mighall TM, Timberlake S, Foster IDL, Krupp E, Singh S (2009) Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. J Archaeol Sci 36:1,504–1,515
Monna F, Galop D, Carozza L, Tual M, Beyrie A, Marembert F, Chateau C, Dominik J, Grousset F (2004a) Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Sci Total Environ 327:197–214
Monna F, Petit C, Guillaumet JP, Jouffroy-Bapicot I, Blanchot C, Dominik J, Losno R, Richard H, Lévêque J, Château C (2004b) History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat-bog (Morvan—France). Environ Sci Technol 38:665–673
Moore PD, Webb JA, Collison ME (1991) Pollen analysis, 2nd ed. Blackwell, Oxford
Nicolussi K, Thurner A, Pichler T (2010) The Wooden Remains from the Prehistoric Ore Processing Site Schwarzenbergmoos near Radfeld/Brixlegg (Tyrol). In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European history—proceedings of the 1st mining in european history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 239–244
Pichler T, Nicolussi K, Thurner A, Goldenberg G (2010) Dendrochronological Dating of Charcoal Originating from an Early Iron Age Fire-Set Pit in the Mining Area of Schwaz/Brixlegg (Tyrol/Austria). In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European history—proceedings of the 1st Mining in European history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 233–237
Punt W (1976) The Northwest European Pollenflora, vol I. Elsevier, Amsterdam
Punt W et al. (1976–1988) The Northwest European Pollen Flora (NEPF) Vol I (1976), Vol II (1980), Vol III (1981), Vol IV (1984) Vol V (1988). Elsevier, Amsterdam
Punt W, Clarke GCS (1980) The Northwest European Pollenflora, vol II. Elsevier, Amsterdam
Punt W, Clarke GCS (1981) The Northwest European Pollenflora, vol III. Elsevier, Amsterdam
Punt W, Clarke GCS (1984) The Northwest European Pollenflora, vol IV. Elsevier, Amsterdam
Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord, Marseille
Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord, Suppl 1, Marseille
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) Intcal09 and marine radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1,111–1,150
Reuer MK, Weiss DJ (2002) Anthropogenic lead dynamics in the terrestrial and marine environment. Phil Trans R Soc Lond A 360:2,889–2,904
Richard H, Eschenlohr L (1998) Essai de corrélation entre les données polliniques et les données archéologiques: Le cas des forêts de Lajoux dans les Franches-Montagnes (Lajoux, Ju, Suisse). Revue d’Archéométrie 22:29–37
Rothwell JJ, Taylor KG, Ander EL, Evans MG, Daniels SM, Allott TEH (2008) Arsenic retention and release in ombrotrophic peatlands. Sci Total Environ 407:1,405–1,417
Schibler J, Breitenlechner E, Deschler-Erb S, Goldenberg G, Hanke K, Hiebel G, Hüster-Plogmann H, Nicolussi K, Marti-Grädel E, Pichler S, Schmidl A, Schwarz S, Stopp B, Oeggl K (2011) Miners and mining in the Late Bronze Age: a multidisciplinary study from Austria. Antiquity 85:1,259–1,278
Seiwald A (1980) Beiträge zur Vegetationsgeschichte Tirols IV: Natzer Plateau, vol 67, Villanderer Alm. Ber Nat-med Verein, Innsbruck, pp 31–72
Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25:95–176
Shotyk W (1996a) Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Envir Rev 4:149–183
Shotyk W (1996b) Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic vs. minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water Air Soil Pollut 90:375–405
Shotyk W, Weiss D, Kramers JD, Frei R, Cherbukin AK, Gloor M, Reese S (2001) Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochem Cosmochim Acta 65:2,337–2,360
Shotyk W, Krachler M, Martínez-Cortizas A, Cheburkin AK, Emons H (2002) A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12,370 14C yr BP, and their variation with Holocene climate change. Earth Planet Sci Lett 199:21–37
Silins U, Rothwell RL (1998) Forest peatland drainage and subsidence affect soil water retention and transport properties in an Alberta Peatland. J Soil Sci Soc Am 62:1,048–1,056
Steinmann P, Shotyk W (1997) Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura mountains, Switzerland). Chem Geol 138:25–53
Stewart C, Fergusson JE (1994) The use of peat in the historical monitoring of trace metals in the atmosphere. Environ Pollut 86:243–249
Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621
Töchterle U, Goldenberg G, Tomedi G (2010) The Late Neolithic to Middle Bronze Age settlement on the Kiechlberg/Thaur (North Tyrol, Austria): raw materials and trade relations. In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European History—proceedings of the 1st mining in european history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 339–344
Troels-Smith J (1955) Characterization of unconsolidated sediments. Danmarks Geologiske Undersøgelse. Aarbog 3:1–73
Van Geel B, Bohncke SJP, Dee H (1980–1981) A palaeoecological study of upper Late Glacial and Holocene sequence from ‘De Borchert’, The Netherlands. Rev Palaeobot Palynol 31:367–448
Weiss D, Shotyk W, Cherburkin AK, Gloor M, Reese S (1997) Atmospheric lead deposition from 12 400 to ca. 2000 yrs BP in a peat bog profile, Jura Mountains, Switzerland. Water Air Soil Pollut 100:311–324
Weiss D, Shotyk W, Appleby PG, Cheburkin AK, Kramers JD (1999) Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environ Sci Technol 33:1,340–1,352
Wilmshurst JM, Wiser SK, Charman DJ (2003) Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. Holocene 13:61–67
Wiltshire PEJ, Edwards KJ (1994) Mesolithic, early Neolithic and later prehistoric impacts on vegetation at a riverine site in Derbyshire. In: Chambers FM (ed) Climate change and human impact on the landscape: studies in palaeoecology and environmental archaeology. Chapman and Hall, London, pp 157–168
Acknowledgments
This study was conducted in the framework of the special research program HiMAT (The History of Mining Activities in the Tyrol and Adjacent Areas—Impact on Environment & Human Societies) with financial support of the Austrian Science Fund FWF (grant no.: F3111-G02). We would like to thank M. Brauns, B. Höppner and T. Schifer, Curt-Engelhorn-Centre for Archaeometry, Mannheim, for carrying out the NAA and ICP analyses and for comments on the geochemical discussion. We would also like to thank E.M. Wild, VERA laboratory, Vienna, for her kind cooperation in AMS dating and G. Hiebel for his help with the general map in 3D.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by K.-E. Behre.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Breitenlechner, E., Goldenberg, G., Lutz, J. et al. The impact of prehistoric mining activities on the environment: a multidisciplinary study at the fen Schwarzenbergmoos (Brixlegg, Tyrol, Austria). Veget Hist Archaeobot 22, 351–366 (2013). https://doi.org/10.1007/s00334-012-0379-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00334-012-0379-6
Keywords
- Prehistoric mining
- Pollen analysis
- Geochemical analysis
- Multi-proxy
- Bronze Age
- Austria