Skip to main content

Advertisement

Log in

The impact of prehistoric mining activities on the environment: a multidisciplinary study at the fen Schwarzenbergmoos (Brixlegg, Tyrol, Austria)

  • Review
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The exploitation of copper ore deposits of the northern Greywacke Zone was initiated by the implementation of metallurgic technologies in the Eastern Alps thousands of years ago. This multi-proxy study aimed to detect prehistoric mining phases in the vicinity of a prominent copper ore deposit in the Lower Inn Valley. Therefore we studied a peat core from a fen using pollen, micro charcoal and geochemical analyses. In the same fen, an archaeological investigation revealed an ore beneficiation site, well dated by dendrochronological analysis to the Late Bronze Age (9th century b.c.). First hints of mining activities reflected by the occurrence of anthropogenic indicators in the pollen diagram, associated with elevated metal values, at the beginning of the Bronze Age might result from early mineral prospecting and metallurgical experiments around the use of fahlore. The local ore deposit was then abandoned until during the Bronze Age mining activities started to increase. This is reflected by an expansion of the pioneer species Pinus and Larix on mine spoil heaps in the proximity. Concomitantly metal ratios and micro charcoal increase. From about 1000 to 850 b.c. a strong impact of mining activities is displayed in the multi-proxy data. The local forest was partly cleared on and in the vicinity of the fen. According to dendrochronological data the ore beneficiation plant was in use from about 900 to 870 b.c. Until about 700 b.c. another period with moderate impact by mining activities in the further vicinity of the fen shows up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambert P, Bouquet L, Guendon J-L, Mischka D (2005) La Capitelle du Broum (district minier de Cabrières-Péret, Hérault): établissement industriel de l`aurore de la métallurgie francaise (3100-2400 BC). In: Ambert P, Vaquer J (eds) La première métallurgie en France et dans les pays limitromorphes. Mémoire 37 de la Société Préhistorique Francaise, pp 83–96

  • Barge H (2003) Saint-Véran, la montagne, le cuivre, et l`homme. I. Mine et métallurgie préhistoriques dans les Hautes-Alpes, Theix

  • Baron S, Lavoie M, Ploquin A, Carigan J, Pulido M, De Beaulieu J-L (2005) Records of metal workshops in peat deposits: history and environmental impact on the Mount Loze`re Massif, France. Envir Sci Technol 39:5,131–5,140

    Google Scholar 

  • Bartelheim M, Eckstein K, Huijsmans M, Krauss R, Pernicka E (2002) Kupferzeitliche Metallgewinnung in Brixlegg, Österreich. In: Bartelheim M, Pernicka E, Krauss R (eds) Die Anfänge der Metallurgie in der Alten Welt (The beginnings of metallurgy in the Old World). Marie Leidorf Verlag, Rahden (Westf), pp 33–82

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Breitenlechner E, Hilber M, Lutz J, Kathrein Y, Unterkircher A, Oeggl K (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Archaeol Sci 37:1,458–1,467

    Article  Google Scholar 

  • Bronk Ramsey C. (2005). Oxcal v3.10. http://c14.arch.ox.ac.uk/embed.php?File=oxcal.html

  • Cloy JM, Farmer JG, Graham MC, MacKenzie AB, Cook GT (2005) A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog. Scotland J Envir Monit 7:1,137–1,147

    Google Scholar 

  • Cushing EJ (1967) Late-Wisconsin pollen stratigraphy and the glacial sequence in Minnesota. In: Cushing EJ, Wright HE (eds) Quaternary palaeoecology. Yale University Press, New Haven, pp 59–88

  • Dörfler W (1995) Versuch einer Modellierung des Energieflusses und des Rohstoffverbrauchs während der römisch-kaiserzeitlichen Eisenverhüttung in Joldelund. Ldkr. Nordfriesland. Probl Küstenforsch südl Nordseegebiet 23:175–185

    Google Scholar 

  • Ejarque A, Julià R, Riera S, Palet JM, Orengo HA, Miras Y, Gascón C (2009) Tracing the history of highland human management in the eastern pre-pyrenees: an interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. Holocene 19:1,241–1,255

    Google Scholar 

  • Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54:561–569

    Google Scholar 

  • Faegri K, Iversen J (1993) Bestimmungsschlüssel für die nordwesteuropäische Pollenflora. Fischer, Jena

    Google Scholar 

  • Fliri F (1975) Das Klima der Alpen im Raume von Tirol. Monographien zur Landeskunde Tirols, Innsbruck

  • Gelmini G (1997) Programm zur grafischen Darstellung von Pollenzähldaten, Diploma thesis, Universität Innsbruck, Innsbruck

  • Goldenberg G, Rieser B (2004) Die Fahlerzlagerstätten von Schwaz/Brixlegg (Nordtirol). Ein weiteres Zentrum urgeschichtlicher Kupferproduktion in den österreichischen Alpen. In: Weisgerber G, Goldenberg G (eds) Alpenkupfer-Rame delle Alpi. Der Anschnitt, Beiheft 17:37–52

  • Goldenberg G, Breitenlechner E, Deschler-Erb S, Hanke K, Hiebel G, Hüster-Plogmann H, Hye S, Klaunzer M, Kovács K, Krismer M, Lutz J, Maass A, Moser M, Nicolussi K, Oeggl K, Pernicka E, Pichler T, Pöllath N, Schibler J, Staudt M, Stopp B, Thurner A, Töchterle U, Tomedi G, Tropper P, Vavtar F Weinold T (2012) Prähistorischer Kupfererzbergbau im Maukental bei Radfeld/Brixlegg. In: Goldenberg G, Töchterle U, Oeggl K, Krenn-Leeb A (eds) Forschungsprogramm HiMAT-Neues zur Bergbaugeschichte der Ostalpen. Archäologie Österreichs Spezial 4:59–110

  • Gstrein P (1988) Geologie, Mineralogie und Bergbau des Gebietes um Brixlegg. In: Landmann S (eds) Brixlegg eine Tiroler Gemeinde im Wandel der Zeit. Brixlegg, pp 11–31

  • Haas JN (1996) Neorhabdocoela oocytes—palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Rev Palaeobot Palynol 91:371–382

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Höppner B, Bartelheim M, Huijsmans M, Krauss R, Martinek KP, Pernicka E, Schwab R (2005) Prehistoric copper production in the Inn Valley (Austria), and the earliest copper in central Europe. Archaeometry 47:293–315

    Article  Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Ivanov KE (1981) Water movement in Mirelands. Academic Press, New York

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT). Accessed http://srtm.csi.cgiar.org

  • Jouffroy-Bapicot I, Pulido M, Baron S, Galop D, Monna F, Lavoie M, Ploquin A, Petit Ch, de Beaulieu J-L, Richard H (2007) Environmental impact of early palaeometallurgy: pollen and geochemical analyses. Veget Hist Archaeobot 16:251–258

    Article  Google Scholar 

  • Juggins S (2007) C2 Version 1.5 User guide. software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne

  • Klaunzer M, Goldenberg G, Hye S, Staudt M, Töchterle U, Tomedi G (2010) Prehistoric Fahlore mining and metallurgy in the Mauken valley, Radfeld/Brixlegg, North-Tyrol. In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European History—proceedings of the 1st mining in European history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 345–349

  • Küster H, Rehfuess K-E (1997) Pb and Cd concentrations in a Southern Bavarian bog profile and the history of vegetation as recorded by pollen analysis. Water Air Soil Pollut 100:379–386

    Article  Google Scholar 

  • Le Roux G, Weiss D, Grattan J, Givelet N, Krachler M, Cheburkin A, Rausch N, Kober B, Shotyk W (2004) Identifying the sources and timing of ancient and medieval atmospheric lead pollution in England using a peat profile from Lindow Bog, Manchester. J Environ Monit 6:502–510

    Article  Google Scholar 

  • Maggi R, Pearce M (2005) Mid fourth-millenium copper mining in Liguria, north-west Italy: the earliest known copper mines in Western Europe. Antiquity 79:66–77

    Google Scholar 

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79

    Article  Google Scholar 

  • Mangerud J, Skreden SA (1972) Fossil ice wedges and ground wedges in sediments below till at Voss, Western Norway. Nor Geol Tidsskr 52:73–96

    Google Scholar 

  • Marshall PD, O’Hara SL, Ottaway BS (1999) Early copper metallurgy in Austria and methods of assessing its impact on the environment. In: Hauptmann A, Pernicka E, Rehren T, Yalçin Ü (eds) The beginnings of metallurgy, vol 9. Der Anschnitt, Beiheft, pp 255–264

  • Martini IP, Martínez Cortizas A, Chesworth W (2006) Peatlands—evolution and records of environmental and climate changes. Elsevier, Oxford

    Google Scholar 

  • Meisel K, Schiechtl HM and Stern R (1984) Karte der aktuellen Vegetation von Tirol 1/100 000. 10. Teil: Blatt 3, Karwendelgebirge-Unterinntal. Documents de cartographie écologique 27:65–84

  • Mighall TM, Chambers FM (1993) Early mining and metalworking: its impact on the environment. Hist Metal 27:71–83

    Google Scholar 

  • Mighall TM, Chambers FM (1997) Early ironworking and its impact on the environment: palaeoecological evidence from Bryn y Castell hillfort, Snowdonia, north Wales. Proc Prehist Soc 63:199–219

    Google Scholar 

  • Mighall TM, Timberlake S, Grattan JP, Forsyth S (2000) Bronze Age lead mining at Copa Hill—fact or fantasy? Historical Metallurgy 34:1–12

    Google Scholar 

  • Mighall TM, Abrahams PW, Grattan JP, Hayes D, Timberlake S, Forsyth S (2002a) Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, U.K. Sci Total Environ 292:69–80

    Article  Google Scholar 

  • Mighall TM, Timberlake S, Clark SHE, Caseldine AE (2002b) A palaeoenvironmental investigation of sediments from the prehistoric mine of Copa Hill, Cwmystwyth, mid-Wales. J Archaeol Sci 29:1,161–1,188

    Article  Google Scholar 

  • Mighall TM, Timberlake S, Foster IDL, Krupp E, Singh S (2009) Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. J Archaeol Sci 36:1,504–1,515

    Google Scholar 

  • Monna F, Galop D, Carozza L, Tual M, Beyrie A, Marembert F, Chateau C, Dominik J, Grousset F (2004a) Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Sci Total Environ 327:197–214

    Article  Google Scholar 

  • Monna F, Petit C, Guillaumet JP, Jouffroy-Bapicot I, Blanchot C, Dominik J, Losno R, Richard H, Lévêque J, Château C (2004b) History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat-bog (Morvan—France). Environ Sci Technol 38:665–673

    Article  Google Scholar 

  • Moore PD, Webb JA, Collison ME (1991) Pollen analysis, 2nd ed. Blackwell, Oxford

  • Nicolussi K, Thurner A, Pichler T (2010) The Wooden Remains from the Prehistoric Ore Processing Site Schwarzenbergmoos near Radfeld/Brixlegg (Tyrol). In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European history—proceedings of the 1st mining in european history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 239–244

  • Pichler T, Nicolussi K, Thurner A, Goldenberg G (2010) Dendrochronological Dating of Charcoal Originating from an Early Iron Age Fire-Set Pit in the Mining Area of Schwaz/Brixlegg (Tyrol/Austria). In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European history—proceedings of the 1st Mining in European history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 233–237

  • Punt W (1976) The Northwest European Pollenflora, vol I. Elsevier, Amsterdam

  • Punt W et al. (1976–1988) The Northwest European Pollen Flora (NEPF) Vol I (1976), Vol II (1980), Vol III (1981), Vol IV (1984) Vol V (1988). Elsevier, Amsterdam

  • Punt W, Clarke GCS (1980) The Northwest European Pollenflora, vol II. Elsevier, Amsterdam

  • Punt W, Clarke GCS (1981) The Northwest European Pollenflora, vol III. Elsevier, Amsterdam

  • Punt W, Clarke GCS (1984) The Northwest European Pollenflora, vol IV. Elsevier, Amsterdam

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord, Marseille

  • Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord, Suppl 1, Marseille

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) Intcal09 and marine radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1,111–1,150

    Google Scholar 

  • Reuer MK, Weiss DJ (2002) Anthropogenic lead dynamics in the terrestrial and marine environment. Phil Trans R Soc Lond A 360:2,889–2,904

    Google Scholar 

  • Richard H, Eschenlohr L (1998) Essai de corrélation entre les données polliniques et les données archéologiques: Le cas des forêts de Lajoux dans les Franches-Montagnes (Lajoux, Ju, Suisse). Revue d’Archéométrie 22:29–37

    Google Scholar 

  • Rothwell JJ, Taylor KG, Ander EL, Evans MG, Daniels SM, Allott TEH (2008) Arsenic retention and release in ombrotrophic peatlands. Sci Total Environ 407:1,405–1,417

    Google Scholar 

  • Schibler J, Breitenlechner E, Deschler-Erb S, Goldenberg G, Hanke K, Hiebel G, Hüster-Plogmann H, Nicolussi K, Marti-Grädel E, Pichler S, Schmidl A, Schwarz S, Stopp B, Oeggl K (2011) Miners and mining in the Late Bronze Age: a multidisciplinary study from Austria. Antiquity 85:1,259–1,278

    Google Scholar 

  • Seiwald A (1980) Beiträge zur Vegetationsgeschichte Tirols IV: Natzer Plateau, vol 67, Villanderer Alm. Ber Nat-med Verein, Innsbruck, pp 31–72

  • Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25:95–176

    Article  Google Scholar 

  • Shotyk W (1996a) Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Envir Rev 4:149–183

    Article  Google Scholar 

  • Shotyk W (1996b) Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic vs. minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water Air Soil Pollut 90:375–405

    Article  Google Scholar 

  • Shotyk W, Weiss D, Kramers JD, Frei R, Cherbukin AK, Gloor M, Reese S (2001) Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochem Cosmochim Acta 65:2,337–2,360

  • Shotyk W, Krachler M, Martínez-Cortizas A, Cheburkin AK, Emons H (2002) A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12,370 14C yr BP, and their variation with Holocene climate change. Earth Planet Sci Lett 199:21–37

    Article  Google Scholar 

  • Silins U, Rothwell RL (1998) Forest peatland drainage and subsidence affect soil water retention and transport properties in an Alberta Peatland. J Soil Sci Soc Am 62:1,048–1,056

    Google Scholar 

  • Steinmann P, Shotyk W (1997) Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura mountains, Switzerland). Chem Geol 138:25–53

    Article  Google Scholar 

  • Stewart C, Fergusson JE (1994) The use of peat in the historical monitoring of trace metals in the atmosphere. Environ Pollut 86:243–249

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Töchterle U, Goldenberg G, Tomedi G (2010) The Late Neolithic to Middle Bronze Age settlement on the Kiechlberg/Thaur (North Tyrol, Austria): raw materials and trade relations. In: Anreiter P, Goldenberg G, Hanke K, Krause R, Leitner W, Mathis F, Nicolussi K, Oeggl K, Pernicka E, Prast M, Schibler J, Schneider I, Stadler H, Stöllner T, Tomedi G, Tropper P (eds) Mining in European History—proceedings of the 1st mining in european history-conference of the SFB HiMAT, 12–15 November 2009, Innsbruck. IUP, Innsbruck, pp 339–344

  • Troels-Smith J (1955) Characterization of unconsolidated sediments. Danmarks Geologiske Undersøgelse. Aarbog 3:1–73

    Google Scholar 

  • Van Geel B, Bohncke SJP, Dee H (1980–1981) A palaeoecological study of upper Late Glacial and Holocene sequence from ‘De Borchert’, The Netherlands. Rev Palaeobot Palynol 31:367–448

  • Weiss D, Shotyk W, Cherburkin AK, Gloor M, Reese S (1997) Atmospheric lead deposition from 12 400 to ca. 2000 yrs BP in a peat bog profile, Jura Mountains, Switzerland. Water Air Soil Pollut 100:311–324

    Article  Google Scholar 

  • Weiss D, Shotyk W, Appleby PG, Cheburkin AK, Kramers JD (1999) Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environ Sci Technol 33:1,340–1,352

    Google Scholar 

  • Wilmshurst JM, Wiser SK, Charman DJ (2003) Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. Holocene 13:61–67

    Article  Google Scholar 

  • Wiltshire PEJ, Edwards KJ (1994) Mesolithic, early Neolithic and later prehistoric impacts on vegetation at a riverine site in Derbyshire. In: Chambers FM (ed) Climate change and human impact on the landscape: studies in palaeoecology and environmental archaeology. Chapman and Hall, London, pp 157–168

    Google Scholar 

Download references

Acknowledgments

This study was conducted in the framework of the special research program HiMAT (The History of Mining Activities in the Tyrol and Adjacent Areas—Impact on Environment & Human Societies) with financial support of the Austrian Science Fund FWF (grant no.: F3111-G02). We would like to thank M. Brauns, B. Höppner and T. Schifer, Curt-Engelhorn-Centre for Archaeometry, Mannheim, for carrying out the NAA and ICP analyses and for comments on the geochemical discussion. We would also like to thank E.M. Wild, VERA laboratory, Vienna, for her kind cooperation in AMS dating and G. Hiebel for his help with the general map in 3D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Breitenlechner.

Additional information

Communicated by K.-E. Behre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitenlechner, E., Goldenberg, G., Lutz, J. et al. The impact of prehistoric mining activities on the environment: a multidisciplinary study at the fen Schwarzenbergmoos (Brixlegg, Tyrol, Austria). Veget Hist Archaeobot 22, 351–366 (2013). https://doi.org/10.1007/s00334-012-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-012-0379-6

Keywords

Navigation