Grains of truth or transparent blindfolds? A review of current debates in archaeological phytolith analysis

Abstract

Phytolith analysis has become an increasingly popular archaeobotanical tool in the past few decades. Phytoliths have been used to support key hypotheses relating to the domestication of several food crops and in the study of ancient diet, and they are of particular importance in contexts where other plant remains are poorly preserved. However, the discipline has also been subject to controversy and debate. This paper gives an overview of the technique and three key case studies covering a range of geographical areas. Some of the problems that are common to each are discussed and suggestions are made for how these problems could be resolved in future research. It is suggested that further caution should be taken during interpretation, and a greater consideration given to taphonomy. Despite these criticisms it is concluded that there is still much potential in the technique, particularly when integrated with other lines of microarchaeological evidence.

This is a preview of subscription content, access via your institution.

References

  1. Ahn SM (2010) The emergence of rice agriculture in Korea: archaeobotanical perspectives. Archaeol Anthrop Sci 2:89–98

    Article  Google Scholar 

  2. Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier JD, Colin F, Faure Denard L (eds) Phytoliths: applications in earth science and human history. Aix en Provence, CEREGE, pp 251–266

    Google Scholar 

  3. Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27:931–947

    Article  Google Scholar 

  4. Albert RM, Shahack-Gross R, Cabanes D, Gilboa A, Lev-Yadun S, Portillo M, Sharon I, Boaretto E, Weiner S (2008) Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. J Archaeol Sci 35:57–75

    Article  Google Scholar 

  5. Albert RM, Bamford MK, Cabanes D (2009) Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quat Int 193:41–48

    Article  Google Scholar 

  6. Albert RM, Berna F, Goldberg P (2010) Insights on Neanderthal fire use at Kebara cave (Israel) through high resolution study of prehistoric combustion features: evidence from phytoliths and thin sections. Quat Int. doi:10.1016/j.quaint.2010.10.016

  7. Ball TB, Gardner JS, Brotherson JD (1996) Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. J Archaeol Sci 23:619–632

    Article  Google Scholar 

  8. Ball TB, Ehlers R, Standing MD (2009) Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed Sci 59:505–512

    Article  Google Scholar 

  9. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878

    Article  Google Scholar 

  10. Boz B, Haddow S, Hager L, Pilloud M (2007) Human remains report Çatalhöyük. Arch Rep 2007:180–198

    Google Scholar 

  11. Bozarth SR, Guderjan TH (2004) Biosilicate analysis of residue in Maya dedicatory cache vessels from Blue Creek, Belize. J Archaeol Sci 31:205–215

    Article  Google Scholar 

  12. Bullock P, Federoff N, Jongerius A, Stoops G, Tursina T (eds) (1985) Handbook for thin section description. WAINE Research Publications, Albrighton

    Google Scholar 

  13. Cabanes D, Mallol C, Expósito I, Baena J (2010) Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). J Archaeol Sci 37:2,947–2,957

    Google Scholar 

  14. Canti MG (1998) The micromorphological identification of faecal spherulites from archaeological and modern materials. J Archaeol Sci 25:435–444

    Article  Google Scholar 

  15. Chen B, Jiang Q (1997) Antiquity of the earliest cultivated rice in central China and its implications. Econ Bot 51:307–310

    Article  Google Scholar 

  16. Cid MS, Detling JK, Brizuela MA, Whicker AD (1989) Patterns in grass silicification: response to grazing history and defoliation. Oecologia 80:268–271

    Google Scholar 

  17. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    Article  Google Scholar 

  18. Darwin C (1846) An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quat J Geol Soc 2:26–30

    Article  Google Scholar 

  19. Delhon C, Alexandre A, Berger J-F, Thiebault S, Brochier J-L, Meunier J-D (2003) Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quat Res 59:48–60

    Article  Google Scholar 

  20. Doolittle WE, Frederick CD (1991) Phytoliths as indicators of prehistoric maize (Zea mays subsp. mays, Poaceae) cultivation. Plant Syst Evol 177:175–184

    Article  Google Scholar 

  21. Elbaum R, Weiner S, Albert RM, Elbaum M (2003) Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. J Archaeol Sci 30:217–226

    Article  Google Scholar 

  22. Emery-Barbier A, Thiébault S (2005) Preliminary conclusions on the Late Glacial vegetation in south-west Anatolia (Turkey): the complementary nature of palynological and anthracological approaches. J Archaeol Sci 32:1,232–1,251

    Google Scholar 

  23. Erlich H, Demadis KD, Pokrovsky OS, Koutsoukos PG (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4,656–4,689

    Google Scholar 

  24. Fairbairn A, Asouti E, Near J, Martinoli D (2002) Macrobotanical evidence for plant use at Neolithic Çatalhöyük, south-central Turkey. Veget Hist Archaeobot 11:41–54

    Article  Google Scholar 

  25. Fishkis O, Ingwersen J, Streck T (2009) Phytolith transport in sandy sediment: experiments and modelling. Geoderma 151:168–178

    Article  Google Scholar 

  26. Fishkis O, Ingwersen J, Lamers M, Denysenko D, Streck T (2010a) Phytolith transport in soil: a field study using fluorescent labelling. Geoderma 157:27–36

    Article  Google Scholar 

  27. Fishkis O, Ingwersen J, Lamers M, Denysenko D, Streck T (2010b) Phytolith transport in soil: a laboratory study on intact soil cores. Eur J Soil Sci 61:445–455

    Article  Google Scholar 

  28. France I, Duller AWG, Duller GAT, Lamb HF (2000) A new approach to automated pollen analysis. Quat Sci Rev 19:537–546

    Article  Google Scholar 

  29. French C, Sulas F, Madella M (2009) New geoarchaeological investigations of the valley systems in the Aksum area of northern Ethiopia. Catena 78:218–233

    Article  Google Scholar 

  30. Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the Lower Yangtze region. Antiquity 81:316–331

    Google Scholar 

  31. Fuller DQ, Sato Y-I, Castillo C, Qin L, Weisskopf AR, Kingwell-Banham EJ, Song J, Ahn S-M, Van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthrop Sci 2:115–131

    Article  Google Scholar 

  32. Gé T, Courty MA, Matthews W, Wattez J (1993) Sedimentary formation processes of occupation surfaces. In: Goldberg P, Nash DT, Petraglia MD (eds) Formation processes in archaeological context. (Monographs in world archaeology 18). Prehistory Press, Madison, pp 149–163

    Google Scholar 

  33. Goldberg P, Miller CE, Schiegl S, Ligouis B, Berna F, Conard NJ, Wadley L (2009) Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeol Anthrop Sci 1:95–122

    Article  Google Scholar 

  34. Grave P, Kealhofer L (1999) Assessing bioturbation in archaeological sediments using soil morphology and phytolith analysis. J Archaeol Sci 26:1,239–1,248

    Google Scholar 

  35. Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith analysis: the example of rice and millets. J Archaeol Sci 32:739–752

    Article  Google Scholar 

  36. Henry AG, Brook AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci 108:486–491

    Article  Google Scholar 

  37. Hillman GC (1981) Reconstructing crop husbandry practices from charred remains of crops. In: Mercer R (ed) Farming practice in British prehistory. Edinburgh University Press, Edinburgh, pp 123–162

    Google Scholar 

  38. Iriarte J (2003) Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. J Archaeol Sci 30:1,085–1,094

    Google Scholar 

  39. Ishida S, Parker AG, Kennet D, Hodson MJ (2002) Phytolith analysis from the archaeological site of Kush, Ras al-Khaimah, United Arab Emirates. Quat Res 59:310–321

    Article  Google Scholar 

  40. Itzstein-Davey F, Taylor D, Dodson J, Atahan P, Zheng H (2007) Wild and domesticated forms of rice (Oryza sp.) in early agriculture at Qingpu, lower Yangtze, China: evidence from phytoliths. J Archaeol Sci 34:2,101–2,108

    Google Scholar 

  41. Jenkins E (2009) Phytolith taphonomy: a comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. J Archaeol Sci 36:2,402–2,407

    Google Scholar 

  42. Jenkins EL, Rosen AM (2007) The phytoliths. In: Finlayson B, Mithen S (eds) The early prehistory of Wadi Faynan, southern Jordan: archaeological survey of Wadis Faynan, Ghuwayr and al-Bustan and evaluation of the Pre-Pottery Neolithic A Settlement of WF16. Oxbow Books, Oxford, pp 429–436

    Google Scholar 

  43. Jenkins E, Nuimat S, Jamjoum K, Baker A, Elliott S, Underwood F (2011) Phytoliths as indicators of past water availability and palaeoeconomic practices. In: 5th Experimental archaeology conference, January 8th–9th, University of Reading

  44. Karkanas P, Esfritou N (2009) Floor sequences in Neolithic Makri, Greece: micromorphology reveals cycles of renovation. Antiquity 83:955–967

    Google Scholar 

  45. Katz O, Gilead I, Bar (Kutiel) P, Shahack-Gross R (2007) Chalcolithic agricultural life at Grar, northern Negev, Israel: dry farmed cereals and dung-fueled fires. Paléorient 33:101–116

    Article  Google Scholar 

  46. Kaufman PB, Dayanandan P, Franklin CI, Takeoka Y (1985) Structure and function of silica bodies in the epidermal system of grass shoots. Ann Bot 55:487–507

    Google Scholar 

  47. Kellogg EA, Bircher JA (1993) Linking phylogeny and genetics: Zea mays as a tool for phylogenetic studies. Syst Biol 42:415–439

    Article  Google Scholar 

  48. Lee Y-J, Woo J-Y (eds) (2003) Prehistoric cultivation in Asia and Sorori rice. Chungbuk National University Museum, Korea

    Google Scholar 

  49. Lentfer CJ, Boyd WE, Gojak D (1997) Hope Farm Windmill: phytolith analysis of cereals in early colonial Australia. J Archaeol Sci 24:841–856

    Article  Google Scholar 

  50. Li P, Treloar WJ, Flenley JR, Empson L (2004) Towards automation of palynology 2: the use of texture measure and neural network analysis for automated identification of optical images of pollen grains. J Quat Sci 19:755–762

    Article  Google Scholar 

  51. MacLeod N (2005) Shape models as a basis for morphological analysis in paleobiological systematics: dicotyledenous leaf physiography. Bull Am Paleontol 369:219–238

    Google Scholar 

  52. Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources by Neanderthals in Amud cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719

    Article  Google Scholar 

  53. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260

    Article  Google Scholar 

  54. Madella M, Jones MK, Echlin P, Powers-Jones A, Moore M (2009) Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quat Int 193:32–40

    Article  Google Scholar 

  55. Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B 273:2,299–2,304

    Google Scholar 

  56. Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677–683

    Article  Google Scholar 

  57. Matthews W (2005) Micromorphological and microstratigraphic traces of uses and concepts of space. In: Hodder I (ed) Inhabiting Çatalhöyük: reports from the 1995–1999 seasons. McDonald Institute for Archaeological Research, Cambridge/BIAA, pp 355–399

    Google Scholar 

  58. Matthews W (2010) Geoarchaeology and taphonomy of plant remains and micromorphological residues in early urban environments in the ancient near east. Quat Int 214:98–113

    Article  Google Scholar 

  59. Matthews W, French CAI (2005) Domestic space at Saar: the microstratigraphic evidence. In: Killick R, Moon J (eds) The early Dilmun settlement at Saar. London-Bahrain Archaeological Expedition. (Saar Excavation Report 3) Archaeology International Ltd, Ludlow, pp 325–337

  60. Matthews W, Postgate JN, with Payne S, Charles MP and Dobney K (1994) The imprint of living in an early Mesopotamian city: questions and answers. In: Luff R, Rowley-Conwy P (eds) Whither environmental archaeology? (Oxbow Monograph 36), Oxbow Books, Oxford, pp 171–212

  61. Matthews W, French CIA, Lawrence T, Cutler DF, Jones MK (1997) Microstratigraphic traces of site formation processes and human activities. World Archaeol 29:281–308

    Article  Google Scholar 

  62. Matthews R, Mohammadifar Y, Matthews W, Motarjem A (2010) Investigating the Early Neolithic of western Iran: the Central Zagros Archaeological Project (CZAP). Antiquity 84:323 project gallery. http://www.antiquity.ac.uk/projgall/matthews323/

    Google Scholar 

  63. McNaughton SJ, Tarrants JL, McNaughton MM, Davis RD (1985) Silica as a defence against herbivory and a growth promoter in African grasses. Ecology 66:528–535

    Article  Google Scholar 

  64. Mithen S, Jenkins E, Jamjoum K, Nuimat S, Nortcliff S, Finlayson BL (2008) Experimental crop growing in Jordan to develop a methodology for the identification of ancient crop irrigation. World Archaeol 40:7–25

    Article  Google Scholar 

  65. Nesbitt M (1993) Archaeobotanical evidence for early Dilmun diet at Saar, Bahrain. Arab Archaeol Epigr 4:20–47

    Article  Google Scholar 

  66. Ollendorf AL (1987) Archaeological Implications of a phytolith study at Tel Miqne (Ekron), Israel. J Field Archaeol 14:453–463

    Article  Google Scholar 

  67. Osterrieth M, Madella M, Zurro D, Alvarez MF (2009) Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quat Int 193:70–79

    Article  Google Scholar 

  68. Parker AS, Lohse CM, Leibovich BC, Cheville JC, Sheinin YM, Kwon ED (2008) Comparison of digital image analysis versus visual assessment to assess surviving expression as an independent predictor of survival for patients with clear cell renal cell carcinoma. Human Pathol 39:1,176–1,184

    Google Scholar 

  69. Parr JF (2006) Effect of fire on phytolith coloration. Geoarchaeology 21(2):171–185

    Article  Google Scholar 

  70. Pearsall DM (1978) Phytolith analysis of archaeological soils: evidence for maize cultivation in formative Ecuador. Science 199:177–178

    Article  Google Scholar 

  71. Pearsall DM, Piperno DR, Dinan EH, Umlauf M, Zhao Z, Bentfer RA Jr (1995) Distinguishing rice (Oryza sativa poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 49:183–196

    Article  Google Scholar 

  72. Pearsall DM, Chandler-Ezell K, Chandler-Ezell A (2003) Identifying maize in neotropical sediments and soils using cob phytoliths. J Archaeol Sci 30:611–627

    Article  Google Scholar 

  73. Pearsall DM, Chandler-Ezell K, Zeidler JA (2004) Maize in ancient Ecuador: results of residue analysis of stone tools from the Real Alto site. J Archaeol Sci 31:423–442

    Article  Google Scholar 

  74. Piperno DR (1984) A comparison and differentiation of phytoliths from maize and wild grasses: use of morphological criteria. Am Antiq 49:361–383

    Article  Google Scholar 

  75. Piperno DR (1985) Phytolith taphonomy and distributions in archaeological sediments from Panama. J Archaeol Sci 12:247–269

    Article  Google Scholar 

  76. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, New York

    Google Scholar 

  77. Piperno DR (1991) The status of phytolith analysis in the American tropics. J World Prehist 5:155–191

    Article  Google Scholar 

  78. Piperno DR (1998) Paleoethnobotany in the Neotropics from microfossils: new insights into ancient plant use and agricultural origins in the tropical forest. J World Prehist 12:394–449

    Article  Google Scholar 

  79. Piperno DR (2003) A few kernels short of a cob: on the Staller and Thompson late entry scenario for the introduction of maize into northern South America. J Archaeol Sci 30:83–826

    Article  Google Scholar 

  80. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  81. Piperno DR (2009) Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat Int 193:146–159

    Article  Google Scholar 

  82. Piperno DR, Ranere AJ, Holst I, Iriarte I, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium b.p. maize from the Central Balsas River Valley, Mexico. Proc Nat Acad Sci USA 106:5,019–5,024

  83. Portillo M, Albert RM, Henry DO (2009) Domestic activities and spatial distribution in Ain Abu Nukhayla (Wadi Rum, Southern Jordan): the use of phytoliths and spherulites studies. Quat Int 193:174–183

    Article  Google Scholar 

  84. Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    Article  Google Scholar 

  85. Roberts N, Rosen A (2009) Diversity and complexity in early farming communities of Southwest Asia: new insights into the economic and environmental basis of Neolithic Çatalhöyük. Current Anthrop 50:393–402

    Article  Google Scholar 

  86. Rosen AM (1992) Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. In: Rapp GJ, Mulholland SC (eds) Phytolith systematics: emerging issues. Plenum Press, New York/London, pp 129–147

    Google Scholar 

  87. Rosen AM (2005) Phytolith indicators of plant and land use at Çatalhöyük. In: Hodder I (ed) Inhabiting Çatalhöyük: reports from the 1995–1999 seasons. McDonald Institute for Archaeological Research/BIAA, Cambridge

    Google Scholar 

  88. Rosen AM, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. J Archaeol Sci 21:125–132

    Article  Google Scholar 

  89. Rovner I (1971) Potential of opal phytoliths for use in paleoecological reconstruction. Quat Res 1:343–359

    Article  Google Scholar 

  90. Rovner I (2004) On transparent blindfolds. Comments on identifying maize in Neotropical sediments and soils using cob phytoliths. J Archaeol Sci 31:815–819

    Article  Google Scholar 

  91. Russ JC, Rovner I (1989) Stereological identification of opal phytolith populations from wild and cultivated Zea maize. Am Antiq 54:784–792

    Article  Google Scholar 

  92. Ryan P (2011) Plants as material culture in the Near Eastern Neolithic: perspectives from the silica skeleton artifactual remains at Çatalhöyük. J Anthropol Archaeol 30:292–305

    Article  Google Scholar 

  93. Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear mammalian teeth? J Archaeol Sci 34:526–531

    Article  Google Scholar 

  94. Shahack-Gross R, Finkelstein I (2008) Subsistence practices in an arid environment: a geoarchaeological investigation in an Iron Age site, the Negev Highlands, Israel. J Archaeol Sci 35:965–982

    Article  Google Scholar 

  95. Shahack-Gross R, Albert RM, Gilboa A, Nagar-Hilman O, Sharon I, Weiner S (2005) Geoarchaeology in an urban context: the uses of space in a Phoenician monumental building at Tel Dor (Israel). J Archaeol Sci 32:1,417–1,431

    Google Scholar 

  96. Shillito L-M (2011a) Taphonomic observations of archaeological wheat phytoliths from Neolithic Çatalhöyük, Turkey, and the use of conjoined phytolith size as an indicator of water availability. Archaeometry 53:631–641

    Article  Google Scholar 

  97. Shillito L-M (2011b) Simultaneous thin section and phytolith observations of finely stratified deposits from Neolithic Çatalhöyük, Turkey: implications for paleoeconomy and Early Holocene paleoenvironment. J Quat Sci 26:576–588

    Article  Google Scholar 

  98. Shillito L-M, Matthews W, Almond MJ (2008) Investigating midden formation processes and cultural activities at Neolithic Çatalhöyük, Turkey. Antiquity 82:317 project gallery. http://antiquity.ac.uk/projgall/shillito/index.html

  99. Shillito L-M, Matthews W, Bull ID, Almond MJ (2011) The microstratigraphy of middens: capturing daily routine in rubbish at Neolithic Çatalhöyük. Turk Antiquity 85(329):1024–1038

    Google Scholar 

  100. Staller JE (2003) An examination of the palaeobotanical and chronological evidence for an early introduction of maize (Zea mays L.) into South America: a response to Pearsall. J Archaeol Sci 30:373–380

    Article  Google Scholar 

  101. Staller JE, Thompson RJ (2002) A multidisciplinary approach to understanding the initial introduction of maize into coastal Ecuador. J Archaeol Sci 29:33–50

    Article  Google Scholar 

  102. Stillman EC, Flenley JR (1996) The needs and prospects for automation in palynology. Quat Sci Rev 15:1–5

    Article  Google Scholar 

  103. Strömberg CAE (2009) Methodological concerns for analysis of phytolith assemblages: Does count size matter? Quat Int 193:124–140

    Article  Google Scholar 

  104. Tsartsidou G, Lev-Yadun S, Albert RM, Rosen A, Efstratiou N, Weiner S (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34:1,262–1,275

    Google Scholar 

  105. Tubb HJ, Hodson MJ, Hodson JC (1993) The inflorescence papillae of the Triticeae: a new tool for archaeological and taxonomic research. Ann Bot 73:537–545

    Article  Google Scholar 

  106. Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Mulholland SC, Rapp GJ (eds) Phytolith systematics—emerging issues. Plenum, New York, pp 113–129

    Google Scholar 

  107. Valamoti SM (2006) Detecting seasonal movement from animal dung: an investigation in Neolithic northern Greece. Antiquity 81:1,053–1,064

    Google Scholar 

  108. Van der Veen M (2007) Formation processes of desiccated and carbonized plant remains—the identification of routine practice. J Archaeol Sci 34:968–990

    Article  Google Scholar 

  109. Wallis LA (2001) Environmental history of northwest Australia based on phytolith analysis at Carpenter’s Gap 1. Quat Int 83–85:103–117

    Article  Google Scholar 

  110. Weiner S (2010) Microarchaeology: beyond the visible archaeological record. Cambridge University Press, Cambridge

    Google Scholar 

  111. Wilson J, Hardy K, Allen R, Copeland L, Wrangham R, Collins M (2010) Automated classification of starch granules using supervised pattern recognition of morphological properties. J Archaeol Sci 37:594–604

    Article  Google Scholar 

  112. Winter-Livneh R, Svoray T, Gilead I (2010) Settlement patterns, social complexity and agricultural strategies during the Chalcolithic period in the northern Negev, Israel. J Archaeol Sci 37:284–294

    Article  Google Scholar 

  113. Zhang Y, Fountain DW, Hodgson RM, Flenley JR, Gunetileke S (2004) Towards automation of palynology 3: pollen pattern recognition using Gabor transforms and digital moments. J Quat Sci 19:736–768

    Article  Google Scholar 

  114. Zhao Z (2010) New data and new issues for the study of origin of rice agriculture in China. Archaeol Anthropol Sci 2:99–105

    Article  Google Scholar 

  115. Zhao Z, Pearsall DM, Bentfer RA Jr, Piperno DM (1998) Distinguishing rice (Oryza sativa, Poaceae) from Oryza species through phytolith analysis, II finalised method. Econ Bot 52:134–145

    Article  Google Scholar 

  116. Zheng Y, Dong Y, Matsui A, Udatsu T, Fujiwara H (2003) Molecular genetic basis of determining subspecies of ancient rice using the shape of phytoliths. J Archaeol Sci 30:1,215–1,221

    Google Scholar 

  117. Zucol AF, Brea M, Scopel A (2005) First record of fossil wood and phytolith assemblages of the Late Pleistocene in el Palmar National Park (Argentina). J S Am Earth Sci 20:33–43

    Article  Google Scholar 

  118. Zurro D, Madella M, Briz I, Vila A (2009) Variability of the phytolith record in fisher-hunter-gatherer sites: an example from the Yamana society (Beagle Channel, Tierra del Fuego, Argentina). Quat Int 193:184–191

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the editor and three anonymous reviewers for providing helpful comments on this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa-Marie Shillito.

Additional information

Communicated by F. Bittmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shillito, LM. Grains of truth or transparent blindfolds? A review of current debates in archaeological phytolith analysis. Veget Hist Archaeobot 22, 71–82 (2013). https://doi.org/10.1007/s00334-011-0341-z

Download citation

Keywords

  • Maize
  • Rice
  • Cereals
  • Taphonomy
  • Morphometrics
  • Microarchaeology