Skip to main content

Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity

Abstract

This paper presents results from a modern dataset of non-pollen palynomorphs and its application to a ca. 2,000 year peat record from the same area in the western Pyrenees (Basque Country, France). The modern dataset is composed of 35 surface samples (moss polsters) from a mountainous pasture-woodland landscape. Airborne fungal spores (ascospores and conidia), found dominant in the dataset, are linked to the degree of landscape openness and grazing pressure. The complete spectrum of 13 selected spore-types of dung-related Ascomycetes is positively linked with grazing pressure. However, different dung affinities between the spore-types have been identified. These are types clearly related to high grazing pressure and types with no or unclear dung indicative value. The modern dataset is used to aid interpretation of the local fossil pollen record as an independent ‘proxy’ to assess past pastoral dynamics. This study confirms the utility of modern non-pollen palynomorphs from terrestrial ecosystems in the reconstruction of historical local pastoral activities but also shows their limitation. It may be necessary to extend such study to wetland ecosystems and to investigate the spatial dimension of some fungal spores.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aptroot A (2006) Gasteromycetes, a source of fossil spores. Abstracts of the 2nd international workshop on non-pollen palynomorphs. Palyno-Bulletin 2:12

    Google Scholar 

  2. Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Rev Palaeobot Palynol 141:225–230

    Article  Google Scholar 

  3. Bell A (2005) An illustrated guide to the coprophilous Ascomycetes of Australia. Utrecht, The Netherlands

    Google Scholar 

  4. Blackford J, Innes J (2006) Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments. Rev Palaeobot Palynol 141:179–187

    Article  Google Scholar 

  5. Blackford J, Innes J, Hatton J, Caseldine C (2006) Mid-Holocene environmental change at Black Ridge Brook, Dartmoor, SW England: a new appraisal based on fungal spore analysis. Rev Palaeobot Palynol 141:189–201

    Article  Google Scholar 

  6. Bos J, van Geel B, Groenewoudt B, Lauwerier R (2005) Early Holocene environmental change, the presence and disappearance of early Mesolithic habitation near Zutphen (The Netherlands). Veget Hist Archaeobot 15:27–43

    Article  Google Scholar 

  7. Bourquin-Mignot C, Girardclos O (2001) Construction d’une longue chronologie de hêtres au Pays Basque. La forêt d’Iraty et le Petit Âge Glaciaire. Sud-Ouest Européen 11:59–71

    Google Scholar 

  8. Boyd W (1986) The role of mosses in modern pollen analysis: the influence of moss morphology on pollen entrapment. Poll Spores 28:243–255

    Google Scholar 

  9. Brocas D, Legaz A (2005) La montagne basque: sources et ressources. Les pâturages et les bois dans les Pyrénées occidentales (XIe-XIXe siècles). Congrès international RESOPYR, Presses Universitaires de Perpignan, Perpignan

    Google Scholar 

  10. Burney D, Robinson G, Pigott Burney L (2003) Sporormiella and the late Holocene extinctions in Madagascar. PNAS 100:10800–10805

    Google Scholar 

  11. Carozza L, Galop D, Marembert F, Monna F (2005) Quel statut pour les espaces de montagne durant l’âge du Bronze? Regards croisés sur les approches sociétés-environnement dans les Pyrénées occidentales. Doc Archéo Mérid 28:7–23

    Google Scholar 

  12. Cooke R, Rayner A (1984) Ecology of saprotrophic fungi. New York

  13. Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quatern Res 28:290–294

    Article  Google Scholar 

  14. Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclim Palaeoecol 237:40–50

    Article  Google Scholar 

  15. Decisia (2002) Spad rel. 5.5: Système pour l’analyse des données. Levallois-Perret, France

    Google Scholar 

  16. Ebersohn C, Eicker A (1992) Trichodelitschia microspora, a new coprophilous species from South Africa. S Afr J Bot 58:145–146

    Google Scholar 

  17. Ellis M (1971) Dematiaceous hyphomycetes. UK

  18. Ellis M, Ellis J (1985) Microfungi on land plants. An identification handbook. Croom Helm, London and Sydney

  19. Ellis M, Ellis J (1998) Microfungi on miscellaneous substrates. An identification handbook. New enlarged edition, The Richmond Publisher, England

    Google Scholar 

  20. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn, revised by Faegri K, Kaland PE and Krzywinski K. Wiley, Chichester

    Google Scholar 

  21. Galop D, Rendu C, Barcet H, Buttler A, Campmajo P, Cugny C, Gauthier E, Legaz A, Lopez-Saez J-A, Mazier F, Métailié J-P, Sordoillet D, Vannière B (2004) Paléoenvironement et archéologie pastorale. Propositions méthodologiques pour une approche intégrée des modalités de l’anthropisation en haute montagne pyrénéenne du Néolithique à l’actuel. Besançon  

    Google Scholar 

  22. Goyhenetche M (2001) Histoire générale du Pays Basque (Tome III) Evolution économique et sociale du XVIe au XVIIIe siècle. Elkarlanean, Donostia

    Google Scholar 

  23. Graf M-T, Chmura G (2006) Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Rev Palaeobot Palynol 141:139–149

    Article  Google Scholar 

  24. Hausmann S, Lotter A, van Leeuwen J, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–289

    Article  Google Scholar 

  25. Innes J, Blackford J (2003) The ecology of Late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194

    Article  Google Scholar 

  26. Jacobson G, Bradshaw R (1981) The selection of sites for paleovegetational studies. Quatern Res 16:80–96

    Article  Google Scholar 

  27. Kiffer E, Morelet M (1997) Les Deutéromycètes. Classification et clés d’identification générique, INRA éditions, Paris

    Google Scholar 

  28. Krug JC, Benny GL, Keller HW (2004) Coprophilous fungi. In: Mueller GM (ed) Biodiversity of fungi. Academic Press, Burlington, pp 467–499

    Chapter  Google Scholar 

  29. Legaz A (2005) Systèmes pastoraux et sociétés en Basse Navarre du XIII au XVIII siècles: construction et transitions. PhD thesis, Université Toulouse-Le Mirail, Toulouse

  30. Lundqvist N (1972) Nordic Sordariaceae s. lat. Symb Bot Upsal 20:1–374

    Google Scholar 

  31. Marembert F (2000) La grotte de Mikelauen-Zilo. In: Galop D (ed) Paléoenvironnement et dynamiques de l’anthropisation en Montagne Basque. Internal report PCR, SRA Aquitaine, CNRS, Toulouse, pp 71–87

  32. Mazier F, Galop D, Brun C, Buttler A (2006) Modern pollen assemblages from grazed vegetation in the western Pyrenees, France: a numerical tool for more precise reconstruction of past cultural landscapes. Holocene 16:91–103

    Article  Google Scholar 

  33. Mazier F, Galop D, Gaillard M-J, Rendu C, Cugny C, Legaz A, Peyron O, Buttler A (2009) Multidisciplinary approach to reconstruct pastoral activities. An example from the Pyrenean Mountains (Pays Basque). Holocene 19:171–178

    Google Scholar 

  34. Mighall T, Martinez Cortizas A, Biester H, Turner SE (2006) Proxy climate and vegetation changes during the last five millennia in NW Iberia: pollen and non-pollen palynomorph data from two ombrotrophic peat bogs in the North Western Iberian Peninsula. Rev Palaeobot Palynol 141:203–223

    Article  Google Scholar 

  35. Moore P, Webb J, Collinson M (1991) Pollen analysis, 2nd edn, Oxford

  36. Mulder C, Beure A, Joosten J (2003) Fungal functional diversity inferred along Ellenberg’s abiotic gradients: palynological evidence from different soil microbiota. Grana 42:55–64

    Google Scholar 

  37. Mulder C, Janssen C (1999) Occurence of pollen and spore in relation to present-day vegetation in a Dutch heathland area. J Veg Sci 10:87–100

    Article  Google Scholar 

  38. Nyberg A, Persson I-L (2002) Habitat difference of coprophilous fungi on moose dung. Mycol Res 106:1360–1366

    Google Scholar 

  39. Pals J, van Geel B, Delfos A (1980) Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (prov of Noor Holland). Rev Palaeobot Palynol 30:371–418

    Article  Google Scholar 

  40. Prager A, Barthelmes A, Theuerkauf M, Joosten H (2006) Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev Palaeobot Palynol 141:7–31

    Article  Google Scholar 

  41. Ralska-Jasiewisczowa M, van Geel B (1992) Early Human disturbance of natural environment recorded in annually laminated sediments of Lake Gosciaz, central Poland. Veget Hist Archaeobot 1:33–42

    Google Scholar 

  42. Reille M (1992–1998) Pollen et spores d’Europe et d’Afrique du Nord. Marseille

  43. Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Bertrand C, Blackwell P, Buck C, Burr G, Cutler K, Damon P, Edwards R, Fairbanks R, Friedrich M, Guilderson T, Hogg A, Hughen K, Kromer B, McCormac G, Manning S, Ramsey C, Reimer R, Remmele S, Southon J, Stuiver M, Talamo S, Taylor F, van der Plicht J, Weyhenmeyer C (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal Kyr B.P. Radiocarbon 46:1029–1058

    Google Scholar 

  44. Richardson J, Walting R (1982) Keys to fungi on dung, revised edn. The British Mycological Society  

    Google Scholar 

  45. Richardson M (1972) Coprophilous Ascomycetes on different dung types. Trans Br Mycol Soc 58:37–48

    Article  Google Scholar 

  46. Stuiver M, Reimer P (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  47. Sugita S (1993) A model of pollen source area for an entire lake surface. Quatern Res 39:239–244

    Article  Google Scholar 

  48. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  49. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120

    Article  Google Scholar 

  50. van Geel B (2001) Non-pollen palynomorphs. In: Smol J, Birks HJB, Last W (eds) Tracking environmental change using lake sediments. Vol 3: Terrestrial, algal, and silicaceous indicators. Kluwer, Dordrecht, pp 99–109

    Google Scholar 

  51. van Geel B, Andersen ST (1988) Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Danmark. Rev Palaeobot Palynol 56:89–93

    Article  Google Scholar 

  52. van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedw 82:313–329

    Article  Google Scholar 

  53. van Geel B, Bos J, Pals J (1983) Archaeological and palaeoecological aspects of a medieval house terp in a reclaimed raised bog area in north Holland. Ber Rijksd Oudheidk Bodemonderz 33:419–444

    Google Scholar 

  54. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883

    Article  Google Scholar 

  55. van Geel B, Zazula G, Schweger C (2007) Spores of coprophilous fungi from under the Dawson tephra (25,300 14C years bp), Yukon Territory, northwestern Canada. Palaeogeogr Palaeoclim Palaeoecol 252:481–485

    Article  Google Scholar 

  56. Yeloff D, Charman D, van Geel B, Mauquoy D (2007) Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils. Rev Palaeobot Palynol 146:102–145

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the PCR “Palaeoenvironment and human activities on the Basque mountain” (Ministry of Culture and SRA Aquitaine) and ATIP-CNRS “Palaeoenvironment and Pastoral Archaeology” programs headed by D. Galop. We are very grateful to Bas van Geel and André Aptroot for assistance with identifying NPPs and fungal spores, to Nicolas de Munnik for constructive comments and for having given access to his mycological library, to Mike Richardson for advice on coprophilous fungi ecology and to Sophie Chambers for having revised the English. The authors would like to thank Jean Nicolas Haas and two anonymous referees for their helpful comments and suggestions on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carole Cugny.

Additional information

Communicated by J.N. Haas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cugny, C., Mazier, F. & Galop, D. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19, 391–408 (2010). https://doi.org/10.1007/s00334-010-0242-6

Download citation

Keywords

  • Non-pollen palynomorphs (NPPs)
  • Modern and fossil NPPs
  • Coprophilous Ascomycetes
  • Grazing activities
  • Pyrenees