Advertisement

Vegetation History and Archaeobotany

, Volume 17, Supplement 1, pp 257–263 | Cite as

Experiments on the effects of carbonization on some cultivated plant seeds

  • Tanja Märkle
  • Manfred Rösch
Original Article

Abstract

Seeds and fruits of plants have different chances of getting carbonized in archaeological contexts. This chance depends on the one hand on the use of each plant; some plants are more likely to get in contact with fire than others, for example when they have to be roasted or cooked before eating. On the other hand this also depends upon the consistency and texture of the seeds themselves, which carbonize under different circumstances. The aim of our experiments was to reveal systematically the behavior of Setaria italica, Panicum miliaceum, Papaver somniferum, Linum usitatissimum and Cannabis sativa during carbonization. For this purpose we heated seeds of each species under both reducing and oxidizing conditions for 1–4 h in a muffle furnace to temperatures of 180–750°C. The results were striking: while reducing conditions usually enlarge the temperature range at which seeds carbonize without getting destroyed, broomcorn millet behaves exactly the opposite way. Papaver somniferum has only very little chance of becoming carbonized at all, because the temperature range at which this happens is very small. The chances of carbonization for Linum usitatissimum are quite good, those of Cannabis sativa even better.

Keywords

Cultivated plants Carbonization Experimental archaeology 

Notes

Acknowledgments

We would like to thank L. Wick and E. Fischer for comments and discussions. Many thanks to G. Wallace and J. Greig for checking the language.

References

  1. Boardman S, Jones G (1990) Experiments on the effects of charring on cereal plant components. J Archaeol Sci 17:1–11CrossRefGoogle Scholar
  2. Bouby L (2002) Le chanvre (Cannabis sativa L.): une plante cultivée à la fin de l’âge du Fer en France du Sud-Ouest? C R Palevol 1:89–95CrossRefGoogle Scholar
  3. Braadbaart F (2004) Carbonization of peas and wheat—a window into the past. A laboratory study. HeemstedeGoogle Scholar
  4. Braadbaart F (2008) Carbonisation and morphological changes in modern dehusked and husked Triticum dicoccum and Triticum aestivum grains. Veget Hist Archaeobot 17:155–166CrossRefGoogle Scholar
  5. Braadbaart F, Van Bergen PF (2005) Digital imaging analysis of size and shape of wheat and pea upon heating under anoxic conditions as a function of the temperature. Veget Hist Archaeobot 14:67–75CrossRefGoogle Scholar
  6. Braadbaart F, Wright PJ (2007) Changes in mass and dimensions of sunflower (Helianthus annuus L.) achenes and seeds due to carbonization. Econ Bot 61:137–153CrossRefGoogle Scholar
  7. Braadbaart F, Boon JJ, Van der Horst J, Van Bergen PF (2004a) Laboratory simulations of the transformation of peas as a result of heating: the change of the molecular composition by DTMS. J Anal Appl Pyrolysis 71:997–1026CrossRefGoogle Scholar
  8. Braadbaart F, Boon JJ, Veld H, David P, Van Bergen PF (2004b) Laboratory simulations of the transformation of peas as a result of heat treatment: changes of the physical and chemical properties. J Archaeol Sci 31:821–833CrossRefGoogle Scholar
  9. Braadbaart F, Van der Horst J, Boon JJ, Van Bergen PF (2004c) Laboratory simulations of the transformation of emmer wheat as a result of heating. J Therm Anal Calorim 77:957–973CrossRefGoogle Scholar
  10. Braadbaart F, Bakels CC, Boon JJ, Van Bergen PF (2005) Heating experiments under anoxic conditions on varieties of wheat. Archaeometry 47:103–114CrossRefGoogle Scholar
  11. Braadbaart F, Wright PJ, Van der Horst J, Boon JJ (2007) A laboratory simulation of the carbonization of sunflower achenes and seeds. J Anal Appl Pyrolysis 78:316–327CrossRefGoogle Scholar
  12. Franke W (1981) Nutzpflanzenkunde. Thieme, StuttgartGoogle Scholar
  13. Guarino C, Sciarrillo R (2004) Carbonized seeds in a protohistoric house: results of hearth and house experiments. Veget Hist Archaeobot 13:65–70CrossRefGoogle Scholar
  14. Gustafsson S (2000) Carbonized cereal grains and weed seeds in prehistoric houses—an experimental perspective. J Archaeol Sci 27:65–70CrossRefGoogle Scholar
  15. Helbæk H (1952) Preserved apples and panicum in the prehistoric site at Nørre Sandegaard in Bornholm. Acta Archaeol 23:107–115Google Scholar
  16. Helbæk H (1970) The plant husbandry of Hacılar. A study of cultivation and domestication. In: Mellaart J (ed) Excavations at Hacılar I. Edinburgh University Press, Edinburgh, pp 189–244Google Scholar
  17. Hillman G, Wales S, McLaren F, Evans J, Butler A (1993) Identifying problematic remains of ancient plant foods: a comparison of the role of chemical, histological and morphological criteria. World Archaeol 25:94–121CrossRefGoogle Scholar
  18. Hilu KW, de Wet JMJ, Harlan JR (1979) Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). Am J Bot 66:330–333CrossRefGoogle Scholar
  19. Hopf M (1955) Formveränderungen von Getreidekörnern beim Verkohlen. Ber Dtsch Bot Ges 68:191–193Google Scholar
  20. Hopf M (1975) Beobachtungen und Überlegungen bei der Bestimmung von verkohlten Hordeum-Früchten. Folia Quat 46:83–92Google Scholar
  21. Jacomet S, Kreuz A (1999) Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. UTB StuttgartGoogle Scholar
  22. Jacomet S, Brombacher C, Dick M (1989) Archäobotanik am Zürichsee. Ackerbau, Sammelwirtschaft und Umwelt von neolithischen und bronzezeitlichen Seeufersiedlungen im Raum Zürich. Berichte der Zürcher Denkmalpflege (Monographien 7) Orrell Füssli, ZürichGoogle Scholar
  23. Kislev ME, Rosenzweig S (1991) Influence of experimental charring on seed dimensions of pulses. In: Hajnalova E (ed) Palaeoethnobotany and archaeology. International work-group for Palaeoethnobotany 8th symposium Nitra-Nové Vozokany 1989. (Acta Interdiscip Archaeol 7) Nitra, pp 143–157Google Scholar
  24. Lüdtke M, Dammers K (1990) Die Keramikherstellung im offenen Feldbrand. Mit einem Beitrag über archäologische Untersuchungen von Feldbränden. In: Experimentelle Archäologie in Deutschland. Archäologische Mitteilungen aus Nordwestdeutschland. Beiheft 4. Isensee, Oldenburg, pp 321–327Google Scholar
  25. Märkle T, Rösch M (2003) Verkohlungsversuche an Kulturpflanzen. Experimentelle Archäologie in Europa. Bilanz 2003: 73–80Google Scholar
  26. Neuweiler E (1905) Die prähistorischen Pflanzenreste Mitteleuropas mit besonderer Berücksichtigung der schweizerischen Funde. Vierteljahresschr Naturforsch Ges Zürich 50:23–134Google Scholar
  27. Poole I, Braadbaart F, Boon JJ, Van Bergen PF (2002) Stable carbon isotope changes during artificial charring of propagules. Org Geochem 33:1675–1681CrossRefGoogle Scholar
  28. Rösch M, Jacomet S, Karg S (1992) The history of cereals in the region of the former Duchy of Swabia (Herzogtum Schwaben) from the Roman to the post-medieval period: results of archaeobotanical research. Veget Hist Archaeobot 1:193–231Google Scholar
  29. Schlichtherle H (1983) Mikroskopische Untersuchungen an neolithischen Gefäßinhalten aus Hornstaad, Yverdon und Burgäschisee-Süd. In: Müller-Beck H, Rottländer R (eds) Naturwissenschaftliche Untersuchungen zur Ermittlung Prähistorischer Nahrungsmittel. Ein Symposiumsbericht. Archaeologica Venatoria, Tübingen, pp 39–61Google Scholar
  30. Schlichtherle H (1985) Samen und Früchte: Konzentrationsdiagramme pflanzlicher Großreste aus einer neolithischen Seeuferstratigraphie. In: Strahm C, Uerpmann H-P (eds) Quantitative Untersuchungen an einem Profilsockel in Yverdon, Av. des Sports. Institut für Ur- und Frühgeschichte, Freiburg im BreisgauGoogle Scholar
  31. Smith H, Jones G (1990) Experiments on the effects of charring on cultivated grape seeds. J Archaeol Sci 17:317–327CrossRefGoogle Scholar
  32. Terral J-F, Alonso N, Buxó i Capdevila R, Chatti N, Fabre L, Fiorentino G, Marinval P, Pérez Jorda G, Pradat B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77Google Scholar
  33. Willerding U (1991) Präsenz, Erhaltung und Repräsentanz von Pflanzenresten in archäologischem Fundgut. (Presence, preservation and representation of archaeological plant remains.) In: Van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 25–51Google Scholar
  34. Wilson DG (1984) The carbonisation of weed seeds and their representation in macrofossil assemblages. In: Van Zeist W, Casparie WA (eds) Plants and ancient man: studies in palaeoethnobotany. Balkema, Rotterdam, pp 201–206Google Scholar
  35. Wright P (2003) Preservation or destruction of plant remains by carbonization? J Archaeol Sci 30:577–583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Labor für ArchäobotanikRegierungspräsidium Stuttgart, Landesamt für Denkmalpflege, Referat 114, Arbeitsstelle HemmenhofenGaienhofenGermany

Personalised recommendations