Skip to main content

Advertisement

Log in

Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Palaeobotanical analysis and radiocarbon dating of lake sediments from Bachalpsee (2265 m a.s.l.), a small lake above the present-day timber-line in the northern Swiss Alps reveals that the region was already deglaciated during the Younger Dryas. The sediment record is dominated by long-distance transported pollen that originates from lowland vegetation but the plant macrofossils give evidence of the local vegetation development. Comparison with palaeobotanical results from three sites along an altitudinal transect permits the reconstruction of the regional timber-line history. Throughout the entire Holocene the catchment of Bachalpsee consisted of a mosaic of open meadows and dwarf shrubs (Salix, Vaccinium, Rhododendron). Chironomid and cladoceran assemblages suggest that the early to mid-Holocene was the warmest interval at Bachalpsee. Comparison of the palaeobotanical results with those from the mire “Feld” (2130 m a.s.l.) in the vicinity of Bachalpsee showed that during the mid-Holocene the timber-line was formed by Pinus cembra and Picea abies with some scattered Abies alba trees and was situated close to Bachalpsee but never reached its catchment. The maximum timber-line in the Northern Alps was reached between 6000 and 3000 cal b.p. which is several millennia later than in the Central Alps. The species composition of the tree-line (Abies alba, Pinus cembra and the absence of Larix decidua) points to less continental and moister climatic conditions compared with the central Alps during the early to mid-Holocene. From 3000 cal b.p. onwards the timber-line was lowered by human deforestation with the most intense pulses of human impact occurring since the Middle Ages. The catchment of Bachalpsee has been used as alpine pasture since the Bronze Age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammann B, Gaillard M-J, Lotter AF (1996) Switzerland. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15000 years: regional syntheses of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 647–666

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Birks HH, Birks HJB (2000) Future uses of pollen analysis must include macrofossils. J Biogeogr 27:31–35

    Article  Google Scholar 

  • Birks HJB (1981) The use of pollen analysis in the reconstruction of past climates: a review. In: Wigley TML, Ingram MJ, Farmer G (eds) Climate and history. Cambridge University Press, Cambridge, pp 111–138

    Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, London.

    Google Scholar 

  • Boucherle MM, Züllig H (1983) Cladoceran remains as evidence of change in tropic state in three Swiss lakes. Hydrobiologia 103:141–146

    Article  Google Scholar 

  • Burga CA, Perret R (1998) Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter. Ott, Thun

    Google Scholar 

  • DeCosta JJ (1964) Latitudinal distribution of chydorid Cladocera in the Mississippi valley, based on their remains in surficial lake sediments. Inv Ind Lakes Streams 6:65–101

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geo- botanica 18:1–258

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Günzler-Seiffert H Wyss R (1938) Erläuterungen zur geologischen Karte von Grindelwald, Blatt 396. Geologischer Atlas der Schweiz 1:25000

    Google Scholar 

  • Guthruf J, Guthruf-Seiler K, Zeh M (1999) Kleinseen im Kanton Bern. Paul Haupt, Bern

    Google Scholar 

  • Heegaard E, Lotter AF, Birks HJB (2006) Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? J Paleolimnol 35:507–518

    Article  Google Scholar 

  • Hegg O, Schneiter R (1978) Vegetationskarte der Bachalp ob Grindelwald. Mitteilungen Natf Gesellschaft Bern NF 35:55–67

    Google Scholar 

  • Heiri C, Bugmann H, Tinner W, Heiri O, Lischke H (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94:206–216

    Article  Google Scholar 

  • Heiri O, Lotter AF (2003) 9000 years of chironomid assemblage dynamics in an Alpine lake: long term faunistic trends, sensitivity of the community to disturbance, and resilience of the ecosystem. J Paleolimnol 30:273–289

    Article  Google Scholar 

  • Heiri O, Lotter AF (2005) Holocene and lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: A review. Boreas 34:506–516

    Article  Google Scholar 

  • Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Heiri O, Lotter AF, Hausmann S, Kienast F (2003a) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13:477–484

    Article  Google Scholar 

  • Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003b) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeogr Palaeoclimatol Palaeoecol 189:35–53

    Article  Google Scholar 

  • Heiri O, Tinner W, Lotter AF (2004) Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. PNAS 101:15285–15288

    Article  Google Scholar 

  • Hofmann W (1983) Stratigraphy of subfossil Chironomidae (Insecta: Diptera) in late glacial littoral sediments from Lobsigensee (Swiss Plateau). Studies in the late Quaternary of Lobsigensee 4. Revue de Paléobiologie 2:205–209

    Google Scholar 

  • Hofmann W (2000) Response of the chydorid faunas to rapid climatic changes in four alpine lakes at different altitudes. Palaeogeogr Palaeoclimatol Palaeoecol 159:281–292

    Article  Google Scholar 

  • Hofmann W (2003) The long-term succession of high-altitude cladoceran assemblages: a 9000-year record from Sägistalsee (Swiss Alps). J Paleolimnol 30:291–296

    Article  Google Scholar 

  • Iversen J (1964) Plant indicators of climate, soil, and other factors during the Quaternary. INQUA Rep Warsaw 1961 2:421–429

    Google Scholar 

  • Knaap W van der, Leeuwen JFN van (2003) Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. The Holocene 13:809–828

    Article  Google Scholar 

  • Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373

    Article  Google Scholar 

  • Körner C (1999) Alpine Plant Life. Springer, Berlin

    Google Scholar 

  • Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of global climatic change. Prog Phys Geogr 20:253–272

    Google Scholar 

  • Lanci L, Hirt AM, Lowrie W, Lotter AF, Lemcke G, Sturm M (1999) Mineral-magnetic record of Late Quaternary climatic changes in a high Alpine lake. Earth Planet Sci Lett 170:49–59

    Article  Google Scholar 

  • Landolt E (1992) Unsere Alpenflora. Schweizer Alpen-Club, Brugg

    Google Scholar 

  • Lang G (1993) Holozäne Veränderungen der Waldgrenze in den Schweizer Alpen – Methodische Ansätze und gegenwärtiger Kenntnisstand. Diss Bot 196:317–327

    Google Scholar 

  • Livingstone DM, Lotter AF, Kettle H (2005) Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnology and Oceanogr 50:1313–1325

    Article  Google Scholar 

  • Lotter AF (2003) Multi-proxy climatic reconstructions. In: Mackay AW, Battarbee RW, Birks HJB, Oldfield F (eds) Global Change in the Holocene. Arnold, London, pp 373–383

    Google Scholar 

  • Lotter AF, Birks HJB (2003a) The Holocene palaeolimnology of Sägistalsee and its environmental history. J Paleolimnol 30:253–342

    Article  Google Scholar 

  • Lotter AF, Birks HJB (2003b) Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. J Paleolimnol 30:253–260

    Article  Google Scholar 

  • Lotter AF, Ammann B, Birks HJB, Heiri O, Hirt A, Lanci L, Lemcke G, Sturm M, van Leeuwen JFN, Walker IR, Wick L (1997a) AQUAREAL: A multi-proxy study of Holocene sediment archives in Alpine lakes. Würzburger Geographische Manuskripte 41:127–128

    Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997b) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat Sci Rev 18:717–735

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Alleröd summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361

    Article  Google Scholar 

  • Meijering MPD (1983) On the occurrence of “arctic” Cladocera with special reference to those along the Strait of Belle Isle (Québec, Labrador, Newfoundland). Int Rev Ges Hydrobiol 68:885–893

    Google Scholar 

  • Ohlendorf C, Sturm M, Hausmann S (2003) Natural environmental changes and human impact reflected in sediments of a high alpine lake in Switzerland. J Paleolimnol 30:297–306

    Article  Google Scholar 

  • Spengler D (1974) Limnologische, hydrologische und morphologische Untersuchungen im Faulhorngebiet (Berner Oberland). PhD thesis Universität Bern

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac FG, van der Plicht J, Spurk M (1998) INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Tinner W, Ammann B (2005) Long-term response of mountain ecosystems to environmental changes: resilience, adjustment, and vulnerability. In: Huber UM, Bugmann H, Reasoner MA (eds) Global Change and Mountain Regions. An overview of current knowledge. Springer, Dordrecht, pp 133–143

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Article  Google Scholar 

  • Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuation of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arctic Antarct Alpine Res 35:158–169

    Article  Google Scholar 

  • Walker IR (1991) Modern assemblages of arctic and alpine Chironomidae as analogues for late-glacial communities. Hydrobiologia 214:223–227

    Article  Google Scholar 

  • Walker IR (2001) Midges: chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Zoological indicators. Developments in Paleoenvironmental Research. Kluwer Academic Publishers, Dordrecht, pp 43–66

    Google Scholar 

  • Walker IR, Mathewes RW (1989) Chironomid (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J Paleolimnol 2:61–80

    Article  Google Scholar 

  • Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as quantitative indicators of past climatic change. Can J Fish Aq Sci 48:975–987

    Google Scholar 

  • Wegmüller S, Lotter AF (1990) Palynostratigraphische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte der nordwestlichen Kalkvoralpen. Botanica Helv 100:37–73

    Google Scholar 

  • Whiteside MC, Harmsworth RV (1967) Species diversity in chydorid (Cladocera) communities. Ecology 48:664–667

    Article  Google Scholar 

  • Wick L (2000) Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeogr Palaeoclimatol Palaeoecol 159:231–250

    Article  Google Scholar 

  • Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arctic Alpine Res 29:445–458

    Article  Google Scholar 

  • Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleo- limnol 30:261–272

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this study to Brigitta Ammann at the occasion of her 65th birthday and would like to express our gratitude for her constant enthusiasm, encouragement, support and many stimulating discussions during all those years.

We would like to thank the following persons for their help during this project: H.J.B. Birks, J. Bonderer, A. Hirt, L. Lanci, G. Lemcke, C. Meile, F. Oberli, C. Ohlendorf, M. Sturm, W. Tanner, M. Wehrli, and A. Zwyssig. W. Tinner and C. Burga made valuable comments on the manuscript. We gratefully acknowledge financial support from the Swiss National Science Foundation within the framework of Priority Programme Environment (project 5001-044600), EU project FOSSILVA (contract no. EVK2-CT-1999–00036), and the Council for Earth and Life Sciences of the Netherlands Organization for Scientific Research (grant no. 813.02.006). This paper is Netherlands Research School of Sedimentary Geology Publication 2005.08.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André F. Lotter.

Additional information

Communicated by W. Tinner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotter, A.F., Heiri, O., Hofmann, W. et al. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veget Hist Archaeobot 15, 295–307 (2006). https://doi.org/10.1007/s00334-006-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-006-0060-z

Keywords

Navigation