Vegetation History and Archaeobotany

, Volume 15, Issue 2, pp 137–144 | Cite as

Dendrochronology in suboptimal conditions: tree rings from medieval oak from Flanders (Belgium) as dating tools and archives of past forest management

  • Kristof Haneca
  • Ilse Boeren
  • Joris Van Acker
  • Hans Beeckman
Original Article


Throughout the Middle Ages forests in Flanders (northern Belgium) experienced a dramatic human influence. Forests were logged for wood supply and converted to arable land. The structure of the remaining forests was altered. This, combined with the tempering influence of the Atlantic climate, results in conditions that are suboptimal for dendrochronological research. Tree-ring series of Quercus robur and Q. petraea of timber from medieval archaeological sites are often short, show abrupt growth-rate variations and are complacent. The question arises whether tree-ring series of this type are potential records of past management and whether they could constitute the basis of a reference chronology for archaeological dating. During six archaeological excavations in and around the medieval town of Ypres, cross-sections were collected. The tree-ring series could be dated back to the 12th–14th centuries, using reference chronologies from surrounding regions. The growth pattern of the short sequences displays a high similarity to tree-ring series from modern coppice. For the first time, it has been confirmed that dendrochronological analysis in Flanders is possible and can provide valuable information on medieval forest use and structure.


Dendrochronology Flanders Quercus spp. Expressed population signal Coppice. Middle Ages 


  1. Baillie MGL (1995) A slice through time. Dendrochronology and precision dating. Batsford Ltd, LondonGoogle Scholar
  2. Baillie MGL, Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree-Ring Bull 33:7–14Google Scholar
  3. Bechmann R (1990) Trees and Man: the forest in the Middle Ages (translated by K Dunham). Paragon House, New YorkGoogle Scholar
  4. Becker B (1981) Fällungsdaten römischer Bauhölzer, anhand einer 2350 jährigen süddeutschen Eichenjahrringchronologie. Fundberichte aus Baden-Württemberg 6:369–386Google Scholar
  5. Bernard V (1998) L'homme, le bois et la forêt dans la France du Nord entre le Mésolithique et le Haut Moyen-Age. BAR International Series 733, OxfordGoogle Scholar
  6. Billamboz A (1996) Tree rings and pile-dwellings in Southern Germany: following in the footsteps of Bruno Huber. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, Environment and Humanity. Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. University of Arizona, Tucson, pp 471–483Google Scholar
  7. Billamboz A (2003) Tree rings and wetland occupation in southwest Germany between 2000 and 500 BC: dendroarchaeology beyond dating in tribute to FH Schweingruber. Tree-Ring Res 59:37–49Google Scholar
  8. Bridge MC (1988) The dendrochronological dating of buildings in southern England. Med Archaeol 32:166–174Google Scholar
  9. Bridge MC, Hibbert FA, Rackham O (1986) Effects of coppicing on the growth of oak timbers in the Bradfield woods, Suffolk. J Ecol 74:1095–1102CrossRefGoogle Scholar
  10. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152Google Scholar
  11. Buis J (1985) Historia forestis: nederlands bosgeschiedenis. HES Uitgevers BV, UtrechtGoogle Scholar
  12. Cook ER (1990) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 98–104Google Scholar
  13. Cook ER, Briffa KR, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of Dendrochronology: Applications in the environmental sciences. Kluwer, Dordrecht, pp 104–123Google Scholar
  14. Eckstein D, Baillie MGL, Egger H (1984) Dendrochronological dating. Handbooks for archaeologists 55. European Science Foundation, Strasbourg, FranceGoogle Scholar
  15. Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250CrossRefGoogle Scholar
  16. Fritts HC (1976) Tree-rings and climate. Academic, LondonGoogle Scholar
  17. Haneca K, Wazny T, Van Acker J, Beeckman H (2005) Provenancing Baltic timber from art historical objects: success and limitations. J Archaeol Sci 32:261–271CrossRefGoogle Scholar
  18. Hillam J, Morgan RA, Tyers I (1987) Sapwood estimates and the dating of short ring sequences. BAR Int Ser 333:165–185Google Scholar
  19. Hoffsummer P (1995) Les charpentes de toiture en Wallonie, typologie et dendrochronologie, (XIe-XIXe siècle). Etudes et documents, Monuments et sites, 1. Ministère de le Région wallonne, Division du patrimoine, NamurGoogle Scholar
  20. Hollstein E (1965) Jahrringchronologische Datierung von Eichenhölzern ohne Waldkante. Bonner Jahrbücher 165:12–27Google Scholar
  21. Hollstein E (1980) Mitteleuropäische Eichenchronologie. Trierer dendrochronologische Forschungen zur Archäologie und Kunstgeschichte, Trier Grabungen und Forschungen 11. Phillipp von Zabern, MainzGoogle Scholar
  22. Houbrechts D, Pieters M (1996) Tonnen uit Raversijde (Oostende, prov. West-Vlaanderen): een goed gedateerd verhaal over water- en andere putten. Archeologie in Vlaanderen 5:225–261Google Scholar
  23. Jansma E (1995) RememberRINGs. The development and application of local and regional tree-ring chronologies of oak for the purposes of archaeological and historical research in the Netherlands. Nederlandse Archeologische Rapporten 19. ROB, AmersfoortGoogle Scholar
  24. Kuniholm PI (2001) Dendrochronology and other applications of tree-ring studies in archaeology. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. Wiley, pp 35–46Google Scholar
  25. Leuschner HH, Spurk M, Baillie M, Jansma E (2000) Stand dynamics of prehistoric oak forests derived from dendrochronologically dated subfossil trunks from bog and riverine sediments in Europe. Geolines 11:118–121Google Scholar
  26. Rackham O (2003) Ancient woodland: its history, vegetation and uses in England. Castlepoint Press, DalbeattieGoogle Scholar
  27. Rinn F (2003) TSAP-Win User Reference (version 0.53). RinnTech, HeidelbergGoogle Scholar
  28. Tack G, van den Bremt P, Hermy M (1993) Bossen van Vlaanderen. Een historische ecologie. Davidsfonds, LeuvenGoogle Scholar
  29. Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, WallingfordGoogle Scholar
  30. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Kristof Haneca
    • 1
  • Ilse Boeren
    • 2
  • Joris Van Acker
    • 1
  • Hans Beeckman
    • 3
  1. 1.Department of Forest and Water Management, Laboratory of Wood TechnologyGhent UniversityGentBelgium
  2. 2.Institut für BotanikHohenheim UniversityStuttgartGermany
  3. 3.AfricamuseumLaboratory for Wood Biology and XylariumTervurenBelgium

Personalised recommendations