Vegetation History and Archaeobotany

, Volume 13, Issue 1, pp 45–54 | Cite as

Identifying endocarp remains and exploring their use at Epipalaeolithic Öküzini in southwest Anatolia, Turkey

Original Article

Abstract

Excavation of the Epipalaeolithic levels of the cave site Öküzini in southwest Anatolia produced many “nutshell” remains, mainly endocarp fragments belonging either to Prunus or Amygdalus. Morphological comparison with the range of potential species and present geographical distribution made it possible to refine the determination to either of two species of wild almond, Amygdalus orientalis or A. graeca . These plants could grow in the surroundings of the site on rocky slopes or sandy hills and had to be collected during late summer. All wild Amygdalus seeds are toxic, so that their use as food is disputed. This paper explores the detoxification possibilities, nutritional properties and ethnographic analogies for the use of wild almonds. It comes to the conclusion that the seeds probably played a notable role in the diet of the Epipalaeolithic population of southwest Anatolia, complementing meat and other plant food. An examination of further prehistoric “nutshell” finds from Anatolia supports a long and widely distributed tradition of almond use.

Keywords

Amygdalus Prunus Endocarp identification Wild-food gathering Detoxification Epipalaeolithic Turkey 

References

  1. Ağar, I.T., Kafkas, S., Kaska, N. (1998) Effect of cold storage on the kernel fatty acid composition of almonds. Acta Horticulturae 470:349–358Google Scholar
  2. Ağcabay, M., Killackey, K. (2002) Macro Botany 2002. Çatalhöyük 2002 Archive Report http://catal.arch.cam.ac.uk/catal/Archive_rep02/a06.html
  3. Ak, B.E., Acar, I., Sakar, E. (2000) An investigation on determination of pomological and morphological traits of wild almond grown at Sanliurfa province. The XI GREMPA Seminar 56, pp 139–144Google Scholar
  4. Antoni, Z. (1971) Histogenetic study on the exocarp, mesocarp and endocarp of the almond. Acta Agronomiae Scientiarium Hungaricae 20:27–34Google Scholar
  5. Atıcı, L., Stutz, A. (2002) Analysis of the ungulate fauna from Öküzini: a preliminary reconstruction of site use, seasonality, and mortality pattern. In: Yalçınkaya, I., Otte, M., Kozlowski, J., Bar-Yosef, O. (eds) Öküzini: final Palaeolithic evolution in southwest Anatolia. Eraul, Liège, pp 101–108Google Scholar
  6. Beyazoglu, O., Dural, H. (1991) Determination of the fatty acids from the seeds of some Amygdalus species. Turk J Biol 15:206–209Google Scholar
  7. Bortiri, E., Oh, S.H., Jiang, J., Bagget, S., Granger, A., Weels, C., Buckingham, M., Potter, D., Parfitt, D.E. (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807Google Scholar
  8. Browicz, K. (1969) Amygdalus. In: Rechinger KH (ed) Flora Iranica. Akademische Druck-u. Verlagsanstalt, Graz, Austria, pp 166–187Google Scholar
  9. Browicz, K. (1972a) Amygdalus. In: Davis PH (ed) Flora of Turkey. Edinburgh University Press, pp 21–28Google Scholar
  10. Browicz, K. (1972b) Distribution of woody Rosaceae in W. Asia IX. Amygdalus orientalis Duh. and closely related species. Arboretum Kornickie 17:5–18Google Scholar
  11. Browicz, K. (1972c) Prunus. In: Davis PH (ed) Flora of Turkey. Edinburgh University Press, pp 8–12Google Scholar
  12. Browicz, K. (1989) Conspect and chorology of the genera Amygdalus L. and Louiseania Carrière. Arboretum Kornickie 34:31–54Google Scholar
  13. Browicz, K., Zielinski, J. (1984) Chorology of trees and shrubs in southwest Asia and adjacent regions. Polish Scientific Publishers, WarsawGoogle Scholar
  14. Browicz, K., Zohary, D. (1996) The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Ev 43:229–247Google Scholar
  15. Colledge, S. (2001) Plant exploitation on Epipalaeolithic and early Neolithic sites in the Levant. BAR International series 986, Archaeopress, OxfordGoogle Scholar
  16. Davis, P.H. et al (1965–1988) Flora of Turkey and the East Aegean Islands. Vol. 1 (1965); Vol. 2 (1967); Vol. 3 (1970); Vol. 4 (1972); Vol. 5 (1975); Vol. 6 (1978); Vol. 7 (1982); Vol. 8 (1984). Edinburgh University Press, EdinburghGoogle Scholar
  17. Dicenta, F., Garcia, J.E. (1992) Inheritance of the kernel flavour in almond. Heredity 70:308–312Google Scholar
  18. Dönmez, A. (1997) Türkyie Pruneae (Rosaceae) tribusunun revizyonu. Doktora Tezi Hacettepe ÜniversitesiGoogle Scholar
  19. Emery-Barbier, A. (2002) La grotte d’Öküzini: analyse palynologique. In: Yalçınkaya, I., Otte, M., Kozlowski, J., Bar-Yosef, O. (eds) La grotte d’Öküzini: évolution du Paléolithique final du sud-ouest de l’Anatolie. Eraul, Liège, pp 85–87Google Scholar
  20. Ertuğ, F. (1997) An ethnoarchaeological study of subsistence and plant gathering in central Anatolia. Doctoral dissertation, Washington UniversityGoogle Scholar
  21. Fairbairn, A., Asouti, E., Near, J., Martinoli, D. (2002) Macro-botanical evidence for plant use at Neolithic Çatalhöyük, south-central Anatolia, Turkey. Veg Hist Archaeobot 11:41–54Google Scholar
  22. Fairbairn, A., Martinoli, D., Butler, A. (2003) The plant remains from Neolithic Çatalhöyük (in prep)Google Scholar
  23. FAO (2002) Roots, tubers, plantains and bananas in human nutrition. Toxic substances and antinutritional factors. FAO, Rome, http://www.fao.org/docrep/T0207E/T0207E08.htm Google Scholar
  24. Ghandelian, P.A., Barseghian, M.A. (1998) The history and use of wild almonds in Armenia. Acta Horticulturae 470:34–37Google Scholar
  25. Grasselly, C. (1976a) Les espèces sauvages d’amandiers. Options Méditerranéennes 32:28–43Google Scholar
  26. Grasselly, C. (1976b) Origine et évolution de l’amandier cultivé. Options Méditerranéennes 32:45–49Google Scholar
  27. Grasselly, C., Crossa-Raynaud, P. (1980) L’amandier. Maisonneuve et Larose, ParisGoogle Scholar
  28. Hansen, J. (1991) The palaeoethnobotany of Franchthi Cave. Indiana University Press, Bloomington, IndianapolisGoogle Scholar
  29. Helbaek, H. (1964) First impressions of the Çatal Hüyük plant husbandry. Anatolian Studies 14:121–123Google Scholar
  30. Helbaek, H. (1970) The plant husbandry of Hacılar. In: Mellart J (ed) Excavations at Hacılar. British Institute of Archaeology at Ankara, Occasional Publication, Edinburgh University Press, pp 189–247Google Scholar
  31. Hillman, G.C. (2000) Abu Hureyra I: The Epipalaeolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates. From foraging to farming at Abu Hureyra. Oxford University Press, Oxford, pp 327–399Google Scholar
  32. Hopf, M., Bar-Yosef, O. (1987) Plant remains from Hayonim cave, western Galilee. Paléorient 13:117–120Google Scholar
  33. Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry 47:155–162Google Scholar
  34. Kester, D.E., Gradziel, T.M. (1996) Almonds. In: Janick, J., Moore, J. (eds) Fruit breeding. Wiley, New York, pp 1–97Google Scholar
  35. Kislev, M.E., Nadel, D., Carmi, I. (1992) Epipalaeolithic (19,000 b.p.) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev Palaeobot Palynol 73:161–166Google Scholar
  36. Kyparissi-Apostolika, N. (1999) The Palaeolithic deposits of Theopetra Cave in Thessaly (Greece). In: Bailey GN, Adam E, Panagopoulou E, Perlès C, Zachos K (eds) The Palaeolithic archaeology of Greece and adjacent areas. Proc ICOPAG Conf, September 1994. British School of Athens Studies, pp 232–239Google Scholar
  37. Ladizinsky, G. (1999) On the origin of almond. Genet Resour Crop Ev 46:143–147Google Scholar
  38. Lee, S., Wen, J. (2001) A phylogenetic study of Prunus and the Amygdaloides (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 88:150–160Google Scholar
  39. Martinoli, D. (2002) Les macrorestes botaniques de la grotte d’Öküzini. In: Yalçınkaya I, Otte M, Kozlowski J, Bar-Yosef O (eds) La grotte d’Öküzini: évolution du Paléolithique final du sud-ouest de l’Anatolie. Eraul, Liège, pp 91–94Google Scholar
  40. Martinoli, D., Jacomet, S. (in prep) Plant, food economy, temporal changes and seasonality pattern at Epipalaeolithic Öküzini and Karain B caves, southwest AnatoliaGoogle Scholar
  41. Martinoli, D., Nesbitt, R.M. (in press) Plant stores at Pottery Neolithic Höyücek, southwest Turkey. Anatolian StudiesGoogle Scholar
  42. McLaren, F.S. (1995) Plums from Douara Cave, Syria: the chemical analysis of charred stone fruits. In: Kroll H, Pasternak R (eds) Res Archaebotanicae, 9th Symposium IWPG, Kiel, pp 195–218Google Scholar
  43. Meikle, R.D. (1966) Rosaceae. In: Townsend CC, Guest E (eds) Flora of Iraq. Ministry of Agriculture, Republic of Iraq, Baghdad, pp 102–171Google Scholar
  44. Moulins, D. de (1997) Agricultural changes at Euphrates and steppe sites in the mid-8th to 6th millennium b.c. BAR International Series 683Google Scholar
  45. Noy, T., Legge, A.J., Higgs, E.S. (1973) Recent excavations at Nahal Oren, Israel. Proc Prehistoric Soc 39:75–99Google Scholar
  46. Otte, M., Lopez Bayon, I., Noiret, P., Bar-Yosef, O., Yalcınkaya, I., Kartal, M., Léotard, J.-M., Pettitt, P. (2003) Sedimentary deposition rates and carbon-14: the Epipalaeolithic sequence of Öküzini cave (Southwest Turkey). J Archaeol Sci 30:325–341Google Scholar
  47. Pasternak, R. (1998) Investigation of botanical remains from Nevali Çori PPNB, Turkey: a short interim report. In: Damania AB, Valkoun J, Willcox G, Qualset CO (ed) The origins of agriculture and crop domestication. The Harlan Symposium, ICARDA, Aleppo Syria, pp 170–177Google Scholar
  48. Rehder, A. (1940) Manual of cultivated trees and shrubs (2nd edn). Macmillan, New YorkGoogle Scholar
  49. Rosenberg, M., Nesbitt, R.M., Redding, R.W., Strasser, T.R. (1995) Allan Çemi Tepesi: some preliminary observations concerning early Neolithic subsistence behaviours in eastern Anatolia. Anatolica 21:1–12Google Scholar
  50. Rosenberg, M., Nesbitt, R.M., Redding, R.W., Peasnall, B.L. (1998) Hallan Çemi, pig husbandry, and post-Pleistocene adaptations along the Taurus-Zagros arc (Turkey). Paléorient 24:25–41Google Scholar
  51. Socias i Company, R. (1998) Fruit tree genetics at a turning point: the almond example. Theor Appl Genet 96:588–601Google Scholar
  52. Thiébault, S. (2002) Approche de l’environnement végétal du site d’Öküzini (Turquie) au Tardiglaciaire par l’analyse anthracologique. In: Yalçınkaya, I., Otte, M., Kozlowski, J., Bar-Yosef, O. (eds) Öküzini: final Paleolithic evolution in southwest Anatolia. Eraul, Liège, pp 95–99Google Scholar
  53. Timbrook, J. (1982) Use of wild cherry pits as food by the Californian Indians. J Ethobiology 22:162–176Google Scholar
  54. Townsend, C., Guest, E. (1966) Flora of Iraq, vol 2. Ministry of Agriculture, BaghdadGoogle Scholar
  55. Woldring, H. (2002) The Early-Holocene vegetation of Central Anatolia and the impact of farming. In: Cappers, R.T.J., Bottema, S. (eds) The dawn of farming in the Near East. Ex Oriente, Berlin, pp 39–48Google Scholar
  56. Yalçınkaya, I., Otte, M., Kozlowski, J., Bar-Yosef, O. (eds) (2002) Öküzini: final Palaeolithic evolution in southwest Anatolia. Eraul, LiègeGoogle Scholar
  57. Zeist, W. van, Bakker-Heeres, J.A.H. (1984/1986) Archaeobotanical studies in the Levant. 3. Late-Palaeolithic Mureybit. Palaeohistoria 26:171–199Google Scholar
  58. Zeist, W. van, Roller, G.J. de (1994) The plant husbandry of aceramic Çayönü, SE Turkey. Palaeohistoria 33/34:65–96Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für Prähistorische und Naturwissenschaftliche Archäologie IPNA, ArchäobotanikUniversität BaselBaselSwitzerland

Personalised recommendations