Skip to main content

Stability of Heteroclinic Cycles: A New Approach Based on a Replicator Equation

A Correction to this article was published on 06 October 2023

This article has been updated

Abstract

This paper analyses the stability of cycles within a heteroclinic network formed by six cycles lying in a three-dimensional manifold, for a one-parameter model developed in the context of polymatrix replicator equations. We show the asymptotic stability of the network for a range of parameter values compatible with the existence of an interior equilibrium and we describe an asymptotic technique to decide which cycle (within the network) is visible in numerics. The technique consists of reducing the relevant dynamics to a suitable one-dimensional map, the so-called projective map. The stability of the fixed points of the projective map determines the stability of the associated cycles. The description of this new asymptotic approach is applicable to more general types of networks and is potentially useful in computational dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Change history

Notes

  1. There is an abundance of references in the literature. We choose to mention only two, based on our personal preferences. The reader interested in further detail may use the references within those we mention.

  2. If \(\gamma =[A\rightarrow B]\) then \(\alpha (\gamma )=A\) and \(\omega (\gamma )=B\).

  3. For \(\varvec{\mu }=102\), the equilibria \(B_1\) and \(B_2\) are centers when restricted to the corresponding faces. The dynamics corresponds to a non-generic bifurcation as described in Section 4 of Alishah et al. (2015).

  4. This hypothesis is equivalent to the Condition (c) of Definition 3.1 of Alishah et al. (2019).

  5. The values of \(E_1\), \(E_2\) and C depend on \(\varvec{\mu }\in \mathcal {I}\); we omit this dependence in order to lighten the notation.

  6. Note that the theory revisited in Sect. 5.9 (in particular, Lemma 14) is valid for different positive real eigenvalues.

References

  • Afraimovich, V.S., Moses, G., Young, T.: Two-dimensional heteroclinic attractor in the generalized Lotka–Volterra system. Nonlinearity 29(5), 1645 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Aguiar, M.A.D.: Is there switching for replicator dynamics and bimatrix games? Physica D 240(18), 1475–1488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Aguiar, M.A.D., Labouriau, I.S., Rodrigues, A.A.P.: Switching near a network of rotating nodes. Dyn. Syst. 25(1), 75–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Alishah, H.N., Duarte, P.: Hamiltonian evolutionary games. J. Dyn. Games 2(1), 33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Alishah, H.N., Duarte, P., Peixe, T.: Conservative and dissipative polymatrix replicators. J. Dyn. Games 2(2), 157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Alishah, H.N., Duarte, P., Peixe, T.: Asymptotic Poincaré maps along the edges of polytopes. Nonlinearity 33(1), 469 (2019)

    Article  MATH  Google Scholar 

  • Alishah, H.N., Duarte, P., Peixe, T.: Asymptotic dynamics of hamiltonian polymatrix replicators. Nonlinearity 36(6), 3182 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Postlethwaite, C.: On designing heteroclinic networks from graphs. Physica D 265, 26–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Barendregt, N.W., Thomas, P.J.: Heteroclinic cycling and extinction in May–Leonard models with demographic stochasticity. J. Math. Biol. 86(2), 30 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Bunimovich, L.A., Webb, B.Z.: Isospectral compression and other useful isospectral transformations of dynamical networks. Chaos Interdiscip. J. Nonlinear Sci. 22, 3 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, S.B.S.D., Garrido-da Silva, L: Finite switching near heteroclinic networks. arXiv preprint arXiv:2211.04202 (2022)

  • Castro, S.B.S.D., Labouriau, I.S., Podvigina, O.: A heteroclinic network in mode interaction with symmetry. Dyn. Syst. 25(3), 359–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, S.B., Ferreira, A., Garrido-da-Silva, L., Labouriau, I.S.: Stability of cycles in a game of Rock-Scissors-Paper-Lizard-Spock. SIAM J. Appl. Dyn. Syst. 21(4), 2393–2431 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Field, M.J.: Lectures on Bifurcations, Dynamics and Symmetry. CRC Press (2020)

    Book  MATH  Google Scholar 

  • Field, M., Swift, J.W.: Stationary bifurcation to limit cycles and heteroclinic cycles. Nonlinearity 4(4), 1001 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Garrido-da Silva, L., Castro, S.B.S.D.: Stability of quasi-simple heteroclinic cycles. Dyn. Syst. 34(1), 14–39 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Gaunersdorfer, A., Hofbauer, J.: Fictitious play, Shapley polygons, and the replicator equation. Games Econ. Behav. 11(2), 279–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer (2013)

    MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Permanence for replicator equations. In: Dynamical Systems, pp. 70–91. Springer (1987)

  • Hofbauer, J., Sigmund, K., et al.: Evolutionary Games and Population Dynamics. Cambridge University Press (1998)

    Book  MATH  Google Scholar 

  • Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, vol. 54. Cambridge University Press (1997)

    MATH  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergodic Theory Dyn. Syst. 15(1), 121–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Labouriau, I.S., Rodrigues, A.A.P.: On Takens’ last problem: tangencies and time averages near heteroclinic networks. Nonlinearity 30(5), 1876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lohse, A.: Unstable attractors: existence and stability indices. Dyn. Syst. 30(3), 324–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Melbourne, I.: An example of a nonasymptotically stable attractor. Nonlinearity 4(3), 835 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: On the concept of attractor. In: The Theory of Chaotic Attractors, pp. 243–264. Springer (1985)

  • Palis, J., de Melo, W.: Local stability. In: Geometric Theory of Dynamical Systems, pp. 39–90. Springer (1982)

  • Peixe, T.: Lotka–Volterra Systems and Polymatrix Replicators. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)–Universidade de Lisboa (Portugal) (2015)

  • Peixe, T.: Permanence in polymatrix replicators. J. Dyn. Games (2019)

  • Peixe, T., Rodrigues, A.: Persistent strange attractors in 3d polymatrix replicators. Physica D 438, 133346 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O.: Stability and bifurcations of heteroclinic cycles of type z. Nonlinearity 25(6), 1887 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O., Ashwin, P.: On local attraction properties and a stability index for heteroclinic connections. Nonlinearity 24(3), 887 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O., Chossat, P.: Simple heteroclinic cycles. Nonlinearity 28(4), 901 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O., Chossat, P.: Asymptotic stability of pseudo-simple heteroclinic cycles in \(\mathbb{R} ^{4}\). J. Nonlinear Sci. 27(1), 343–375 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O., Castro, S.B.S.D., Labouriau, I.S.: Stability of a heteroclinic network and its cycles: a case study from Boussinesq convection. Dyn. Syst. 34(1), 157–193 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Podvigina, O., Castro, S.B.S.D., Labouriau, I.S.: Asymptotic stability of robust heteroclinic networks. Nonlinearity 33(4), 1757 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Postlethwaite, C.M., Rucklidge, A.M.: Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock. Nonlinearity 35, 1702 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues, A.A.P.: Persistent switching near a heteroclinic model for the geodynamo problem. Chaos Solitons Fractals 47, 73–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues, A.A.P.: Attractors in complex networks. Chaos Interdiscip. J. Nonlinear Sci. 27(10), 103105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Elsevier (2014)

    MATH  Google Scholar 

  • Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246(5427), 15–18 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two referees for the constructive comments, corrections and suggestions which helped to improve the readability of this manuscript. They also thank to Pedro Duarte for the suggestion of the projective map defined in Sect. 5.11 during the first author’s PhD period.

The first author was supported by the Project CEMAPRE/REM-UIDB /05069/2020 financed by FCT/MCTES through national funds. The second author was partially supported by CMUP (UID/MAT/00144/2020), which is funded by Fundação para a Ciência e Tecnologia (FCT) with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. He also benefits from the grant CEECIND/01075/2020 of the Stimulus of Scientific Employment—3rd Edition (Individual Support) awarded by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. Rodrigues.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“The original online version of this article was revised: Table 7 has been updated".

Appendices

Appendix A

See Tables 8, 9, 10, 11 and 12.

Table 8 The eigenvalues of system (6) at the vertices, where the entry at line i and row j is the eigenvalue of the vertex \(v_j\) in the orthogonal direction to the face \(\sigma _i\), and the symbol \(*\) means that the vertex \(v_i\) does not belong to the face \(\sigma _j\) of \([0,1]^3\)
Table 9 Eigenvalues of equilibria \(B_1\) and \(B_2\), depending on \(\varvec{\mu }\), at the corresponding faces and pointing to the interior of the cube, where the signs \((-)\), (0), and \((+)\) mean that the eigenvalues are real negative, zero or positive, respectively
Table 10 Branches of \(\pi _{\mathcal {S}}\): defining equations of \(\Pi _{\xi }\), the matrix of \(\pi _\xi \), and their eigenvalues and eigenvectors, for \(\xi \in \{ \xi _1, \xi _2, \dots , \xi _6\}\)
Table 11 Cycles in \(\Pi _{\gamma _5}\): defining equations of \(\Pi _{\mathcal {H}}\subset \Pi _{\gamma _5}\), the matrix of \(\pi _\mathcal {H}\), and their eigenvalues and eigenvectors, for each \(\mathcal {H}\in \{\mathcal {H}_2, \mathcal {H}_4, \mathcal {H}_5, \mathcal {H}_6\}\) in \(\Pi _{\gamma _5}\)
Table 12 Cycles in \(\Pi _{\gamma _8}\): defining equations of \(\Pi _{\mathcal {H}}\subset \Pi _{\gamma _8}\), the matrix of \(\pi _\mathcal {H}\), and their eigenvalues and eigenvectors, for \(\mathcal {H}\in \{\mathcal {H}_1, \mathcal {H}_2, \mathcal {H}_4, \mathcal {H}_5\}\) in \(\Pi _{\gamma _8}\)

Appendix B. Notation

We list the main notation for constants and auxiliary functions used in this paper in order of appearance with the reference of the section containing their definition Table 13.

Table 13 Notation

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixe, T., Rodrigues, A.A. Stability of Heteroclinic Cycles: A New Approach Based on a Replicator Equation. J Nonlinear Sci 33, 99 (2023). https://doi.org/10.1007/s00332-023-09953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09953-7

Keywords

Mathematics Subject Classification