Abstract
The internal state of a cell in a coupled cell network is often described by an element of a vector space. Synchrony or anti-synchrony occurs when some of the cells are in the same or the opposite state. Subspaces of the state space containing cells in synchrony or anti-synchrony are called polydiagonal subspaces. We study the properties of several types of polydiagonal subspaces of weighted coupled cell networks. In particular, we count the number of such subspaces and study when they are dynamically invariant. Of special interest are the evenly tagged anti-synchrony subspaces in which the number of cells in a certain state is equal to the number of cells in the opposite state. Our main theorem shows that the dynamically invariant polydiagonal subspaces determined by certain types of couplings are either synchrony subspaces or evenly tagged anti-synchrony subspaces. A special case of this result confirms a conjecture about difference-coupled graph network systems.
This is a preview of subscription content, access via your institution.






Data Availability
This paper’s data are computer-generated and available at Nijholt et al. (2022).
References
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 ed. A Wiley-Interscience Publication. Selected Government Publications. New York: John Wiley & Sons, Inc; Washington, D.C.: National Bureau of Standards. xiv, 1046 pp (1984)
Adler, V.E.: Set partitions and integrable hierarchies. Theor. Math. Phys. 187(3), 842–870 (2016)
Aguiar, M., Dias, A.: Synchrony and antisynchrony in weighted networks. SIAM J. Appl. Dyn. Syst. 20(3), 1382–1420 (2021)
Aguiar, M.A.D., Dias, A.P.S.: The lattice of synchrony subspaces of a coupled cell network: characterization and computation algorithm. J. Nonlinear Sci. 24(6), 949–996 (2014)
Arenas, A., DĂaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)
Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics (1994)
BĂ³na, M.: A walk through combinatorics. An introduction to enumeration and graph theory. With a foreword by Richard Stanley. Hackensack, NJ: World Scientific (2017)
da ConceiĂ§Ă£o, A., Leite, M., Golubitsky, M.: Homogeneous three-cell networks. Nonlinearity 19(10), 2313–2363 (2006)
Diggans, C.T., Fish, J., AlMomani, A.A.R., Bollt, E.M.: The essential synchronization backbone problem. Chaos Interdiscip. J. Nonlinear Sci. 31(11), 113142 (2021)
Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry: I: wreath products. Nonlinearity 9(2), 559–574 (1996)
Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry: II: direct products. Nonlinearity 9(2), 575–599 (1996)
Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9(10), 474–480 (2005)
Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and groups in bifurcation theory. Vol. II, volume 69 of Applied Mathematical Sciences. Springer-Verlag, New York (1988)
Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)
Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence models, analysis, and simulation. J Arti Soc Soc Simul 5(3), 1 (2002)
Hu, J., Zheng, W.X.: Bipartite consensus for multi-agent systems on directed signed networks. In: 52nd IEEE conference on decision and control, pp 3451–3456. IEEE (2013)
Huang, L., Chen, Q., Lai, Y.-C., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(3), 036204 (2009)
Kaplansky, I.: Linear Algebra and Geometry: A Second Course, p. 139. Allyn and Bacon, Inc, Boston (1969)
Kim, C.-M., Rim, S., Kye, W.-H., Ryu, J.-W., Park, Y.-J.: Anti-synchronization of chaotic oscillators. Phys. Lett. A 320(1), 39–46 (2003)
Liu, W., Qian, X., Yang, J., Xiao, J.: Antisynchronization in coupled chaotic oscillators. Phys. Lett. A 354(1–2), 119–125 (2006)
Meng, J., Wang, X.Y.: Robust anti-synchronization of a class of delayed chaotic neural networks. Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023113 (2007)
Miller, D.A., Kowalski, K.L., Lozowski, A.: Synchronization and anti-synchronization of chua’s oscillators via a piecewise linear coupling circuit. In 1999 IEEE international symposium on circuits and systems (ISCAS), volume 5, pages 458–462. IEEE (1999)
Morone, F., Leifer, I., Makse, H.A.: Fibration symmetries uncover the building blocks of biological networks. Proc. Natl. Acad. Sci. 117(15), 8306–8314 (2020)
Neuberger, J.M., Sieben, N., Swift, J.W.: Computing eigenfunctions on the Koch snowflake: a new grid and symmetry. J. Comput. Appl. Math. 191(1), 126–142 (2006)
Neuberger, J.M., Sieben, N., Swift, J.W.: Synchrony and Antisynchrony for Difference-Coupled Vector Fields on Graph Network Systems. SIAM J. Appl. Dyn. Syst. 18(2), 904–938 (2019)
Neuberger, J.M., Sieben, N., Swift, J.W.: Invariant synchrony subspaces of sets of matrices. SIAM J. Appl. Dyn. Syst. 19(2), 964–993 (2020)
Nijholt, E., Sieben, N., Swift, J.W.: Github repository. https://github.com/jwswift/Anti-Synchrony-Subspaces/ (2022)
Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
Pirzada, S., Naikoo, T.A., Samee, U., IvĂ¡nyi, A.: Imbalances in directed multigraphs. Acta Univ. Sapientiae Math. 2(2), 137–145 (2010)
Sloane, N.J.A.: The OEISÂ Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org, (2021)
Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2(4), 609–646 (2003)
Supina, M.: The Hopf monoid of orbit polytopes. J. Comb. 11(4), 575–601 (2020)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
Wedekind, I., Parlitz, U.: Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers. Int. J. Bifurc. Chaos 11(04), 1141–1147 (2001)
Weisstein, E.W.: Modified bessel function of the first kind from MathWorld: a Wolfram Web Resource, https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html. Last visited on 3/18/2022
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall of India, New Delhi (2005)
Wilson, R.J.: Introduction to graph theory, 4th edn. Longman, Harlow (1996)
Acknowledgements
E.N. acknowledges the support of the Center for Research in Mathematics Applied to Industry (FAPESP Cemeai grant 2013/07375-0) and the Serrapilheira Institute (Grant No. Serra-1709-16124)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no financial conflict of interest.
Additional information
Communicated by Paul Newton.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nijholt, E., Sieben, N. & Swift, J.W. Invariant Synchrony and Anti-synchrony Subspaces of Weighted Networks. J Nonlinear Sci 33, 63 (2023). https://doi.org/10.1007/s00332-023-09924-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-023-09924-y