Skip to main content
Log in

Small-Time Extinction with Decay Estimate of Bilinear Systems on Hilbert Space

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper considers the stabilization problem of bilinear systems in small time by various feedback laws. Then, under some reasonable assumptions on the system and control operator, we prove the global polynomial stabilization of the bilinear system, at hand, in a small time by unbounded feedback. A decay rate of the stabilized state is explicitly estimated. Moreover, we use an observability condition to prove a partial stabilization in a prescribed time by time-varying feedback. Examples of heat, transport and wave equations are revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We precise here the following sets \({\mathbb {S}}_d (1):={\{u\in X: ||u||_d=1}\}\), \( B_d (1):={\{u\in X: ||u||_d\leqslant 1}\}.\)

  2. Note that, in \({\mathbb {R}}\) the equation \(\dot{z}=-ksgn(z)|z|^{a}\), with \(z(0)=z_0\not =0\) and \(\theta \in (0,\,1)\) admits the solution \(z(t)=sgn(z_0)\big (|z_0|^{1-\theta }-k(1-\theta )t\big )^{1/(1-\theta )})\) if \(t\leqslant \frac{|z_0|^{1-\theta }}{k(1-\theta )}\), and \(z(t)=0\) if else.

  3. 1. A function \(\alpha :{\mathbb {R}}_{+}\rightarrow {\mathbb {R}}_{+}\) is said in class \({\mathcal {K}}\) if \(\alpha (0)=0\) and \(\alpha \) is continuous and strictly increasing. 2. A function \(\alpha :{\mathbb {R}}_{+}\rightarrow {\mathbb {R}}_{+}\) is said in class \({\mathcal {K}}_{\infty }\), if \(\alpha \in {\mathcal {K}}\) and \(\alpha (t)\rightarrow +\infty \) when \(t\rightarrow +\infty .\) 3. A function \(\beta :{\mathbb {R}}_{+}\times {\mathbb {R}}_{+}\rightarrow {\mathbb {R}}_{+}\) is belongs to class \({{\mathcal {K}}}{{\mathcal {L}}}\) if for every fixed \(t\geqslant 0,\,\beta (.,\,t)\in {\mathcal {K}}_{\infty }\) and for each fixed \(s\in {\mathbb {R}}_{+}, \beta (s,\,t)\rightarrow 0\) as \(t\rightarrow +\infty .\)

References

  • Antontsev, S.N., Díaz, J.I., Shmarev, S.: Energy methods for free boundary problems: applications to nonlinear PDEs and fluid mechanics, volume 48 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Basel (2002)

  • Ball, J.M.: On the asymptotic behavior of generalized grocesses with applications to nonlinear evolution equations. J. Diff. Equ. 27, 224–265 (1978)

    Article  MATH  Google Scholar 

  • Ball, J.M., Marsden, J.E., Slemrod, M.: Controllability for distributed bilinear systems. SIAM J. Control. Optim. 20(4), 575–597 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, J.M., Slemrod, M.: Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5, 169–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Banks, S.P.: Stabilizability of finite and infinite dimensional bilinear systems. IMA J. Math. Contr. Info. 3, 255–271 (1986)

    Article  MATH  Google Scholar 

  • Ben Belgacem, G., Jammazi, C.: On the finite-time Bhat-Bernstein feedbacks for the strings connected by a point mass. Discrete Contin. Dyn. Syst. Ser. B 24, 1653–1675 (2019)

    MathSciNet  MATH  Google Scholar 

  • Berrahmoune, L.: Stabilization and decay estimate for distributed bilinear systems. Syst. Control Lett. 36, 167–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38, 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17, 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, M.E., Lenhart, S., Yong, J.: Bilinear optimal control of the velocity term in a Kirchhoff plate equation. J. Math. Anal. Appl. 238, 451–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Carles, R., Gallo, C.: Finite time extinction by nonlinear damping for the Schrödinger equation. Comm. Partial Differ. Equ. 36(6), 961–975 (2011)

    Article  MATH  Google Scholar 

  • Chen, Min-Shin.: Exponential stabilization of a constrained bilinear system. Automatica 34(8), 989–992 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Coron, J.M.: Control and Nonlinearity, volume 136. Math. surveys and monographs (2007)

  • Coron, J.M., Gagnon, L., Morancey, M.: Rapid stabilization of a linearized bilinear 1-d Schrödinger equation. J. Math. Pures Appl. 115, 24–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • d’Andréa Novel, B., Coron, J.-M., Perruquetti, W.: Small-time stabilization of nonholonomic or underactuated mechanical systems: the unicycle and the slider examples. SIAM J. Control. Optim. 58(5), 2997–3018 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz, J.I.: Special finite time extinction in nonlinear evolution systems: dynamic boundary conditions and Coulomb friction type problems, volume 64 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Verlag Basel/Switzerland, (2005)

  • Hong, Y., Jiang, Z.P.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(2), 1950–1956 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Jammazi, C.: Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM J. Control. Optim. 52(1), 520–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Jammazi, C., Abichou, A.: Controllability of linearized systems implies local finite-time stabilizability: applications to finite-time attitude control. IMA Math. Control Info 35(2), 249–277 (2018)

    MathSciNet  MATH  Google Scholar 

  • Jammazi, C., Ben Belgacem, G.: On the finite-time stabilization of some hyperbolic control systems by boundary feedback laws: Lyapunov approach. In: Identification and Control: Some New Challenges, pp. 137–160. Contemp. Math., 757, Amer. Math. Soc., Providence, RI (2020)

  • Khalil, H.K.: Nonlinear Systms, 3rd edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  • Liang, Min: Bilinear optimal control for a wave equation. Math. Model Meth. Appl. Sci. 9(1), 45–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohler, R.R., Frick, P.A.: Bilinear demographic control processes. Int. J. Policy Anal. Inf. Syst. 2, 57–70 (1979)

    Google Scholar 

  • Muller, S.: Strong convergence and arbitrarily slow decay of energy for a class of bilinear control problems. J. Differ. Equ. 81, 50–67 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouzahra, M.: Stabilization with decay estimate for a class of distributed bilinear systems. Eur. J. Control 5, 509–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouzahra, M.: Strong stabilization with decay estimate of semilinear systems. Syst. Control Lett. 57, 813–815 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouzahra, M.: Exponential and weak stabilization of constrained bilinear systems. SIAM Contr. Optim. 48(6), 3962–3974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouzahra, M.: Exponential stabilization of distributed semilinear systems by optimal control. J. Math. Anal. Appl. 380, 117–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Pazy, A.: Semi-groups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  • Perrollaz, V., Rosier, L.: Finite-time stabilization of systems of conservation laws on networks. SIAM Contr. Optim. 52(1), 143–163 (2014)

    Article  MATH  Google Scholar 

  • Polyakov, A.: Generalized Homogeneity in Systems and Control. Communications and Control Engineering, Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  • Polyakov, A., Coron, J. M., Rosier, L.: On finite-time stabilization of evolution equations: A homogeneous approach. In: IEEE 55th Conference on Decision and control, Las Vegas, USA (2016)

  • Polyakov, A., Coron, J.M., Rosier, L.: On boundary finite-time feedback control for heat equation. In: 20th IFAC World Congress, Toulouse, France, July (2017)

  • Polyakov, A., Coron, J.M., Rosier, L.: On homogeneous finite time control for linear evolution equation in hilbert space. IEEE Trans. Autom. Control 63(9), 3143–3150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Quinn, J.P.: Stabilization of bilinear systems by quadratic feedback controls. J. Math. Anal. Appl. 75, 66–80 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Sogoré, M., Jammazi, C.: On the global finite-time stabilization of bilinear systems by homogeneous feedback laws. Applications to some PDE’s. J. Math. Anal. Appl 486, 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Song, Y., Wang, Y., Krstic, M.: Time-varying feedback for stabilization in prescribed finite time. Int. J. Robust Nonlinear Control 29(3), 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Williamson, D.: Observation of bilinear systems with application to biological control. Automatica 13, 243–254 (1977)

    Article  MATH  Google Scholar 

  • Zerrik, E.H., Boukhari, N.E.: Optimal bounded controls problem for bilinear systems. Evol. Equ. Control Theory 4(2), 221–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zerrik, E.H., Boukhari, N.E.: Constrained optimal control for a class of semilinear infinite dimensional systems. J. Dyn. Control Syst. 24, 65–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees who read the work with great care, and made interesting remarks and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaker Jammazi.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jammazi, C., Ouzahra, M. & Sogoré, M. Small-Time Extinction with Decay Estimate of Bilinear Systems on Hilbert Space. J Nonlinear Sci 33, 54 (2023). https://doi.org/10.1007/s00332-023-09914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09914-0

Keywords

Mathematics Subject Classification

Navigation