Abstract
In this note, we investigate Liouville-type theorems for the steady three-dimensional MHD and Hall-MHD equations and show that the velocity field u and the magnetic field B are vanishing provided that \(B\in L^{6,\infty }(\mathbb {R}^3)\) and \(u\in BMO^{-1}(\mathbb {R}^3)\), which state that the velocity field plays an important role. Moreover, the similar result holds in the case of partial viscosity or diffusivity for the three-dimensional MHD equations.
Similar content being viewed by others
References
Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. 15(3), 583–616 (2013)
Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)
Carrillo, B., Pan, X., Zhang, Q., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237(3), 1383–1419 (2020)
Chae, D.: Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326, 37–48 (2014)
Chae, D.: Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system. J. Math. Fluid Mech. 23(1), 21 (2021)
Chae, D., Degond, P., Liu, J.-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 555–565 (2014)
Chae, D., Weng, S.: Liouville type theorems for the steady axially symmetric Navier–Stokes and Magnetohydrodynamic equations. Dis. Continuous Dyn. Syst. 36(10), 5267–5285 (2016)
Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in \(R^3\). J. Differ. Equ. 261(10), 5541–5560 (2016)
Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier–Stokes equations. Calc. Var. Partial Differ. Equ. 58(3), 11 (2019)
Chae, D., Wolf, J.: On Liouville type theorems for the stationary MHD and Hall-MHD systems. arXiv:1812.04495
De Nitti, N., Hounkpe, F., Schulz, S.: On Liouville-type theorems for the 2D stationary MHD equations. arXiv:2103.00551 [math.AP]
Fan, H., Wang, M.: The Liouville type theorem for the stationary magnetohydrodynamic equations. J. Math. Phys. 62, 031503 (2021). https://doi.org/10.1063/5.0036229
Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, Steady-state problems, Second edition, p. xiv+1018. Springer, New York (2011)
Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29(1), 190–197 (2019)
Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(2), 381–404 (1978)
Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)
He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)
Koch, G., Nadirashvili, N., Seregin, G., Sverak, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83–105 (2009)
Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)
Korobkov, M., Pileckas, K., Russo, R.: The Liouville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence of swirl. J. Math. Fluid Mech. 17, 287–293 (2015)
Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions. J. Funct. Anal. 272, 804–818 (2017)
Leray, J.: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose lhydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)
Li, Z., Liu, P., Niu, P.: Remarks on Liouville type theorems for the 3D stationary MHD equations. Bull. Korean Math. Soc. 57(5), 1151–1164 (2020)
Li, Z., Pan, X.: Liouville theorem of the 3D stationary MHD system: for D-solutions converging to non-zero constant vectors. NoDEA Nonlinear Differ. Equ. Appl. 28(2), 14 (2021)
Nguyen, A.D., Jesus, I.D., Nguyen, Q.: Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces. Nonlinear Anal. 173, 146–153 (2018)
O’Neil, R.: Convolution operators and \(L^{p, q}\) spaces. Duke Math J. 30, 129–142 (1963)
Politano, H., Pouquet, A., Sulem, P.-L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995)
Schnack, D. D.: Lectures in magnetohydrodynamics. With an appendix on extended MHD. Lecture Notes in Physics, 780. Springer, Berlin, pp. xvi+323 (2009)
Schulz, S.: Liouville type theorem for the stationary equations of magneto-hydrodynamics. Acta Math. Sci. 39B(2), 491–497 (2019)
Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29, 2191–2195 (2016)
Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra Anal. 30(2), 238–248 (2018)
Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. Algebra i Analiz 31 (2019), no. 2, 269–278; reprinted in St. Petersburg Math. J. 31 (2020), no. 2, 387–393
Tsai, T.-P.:, Lectures on Navier-Stokes equations. Graduate Studies in Mathematics, 192. American Mathematical Society, Providence, RI, 2018. xii+224 pp. ISBN: 978-1-4704-3096-2
Wang, W.: Liouville-type theorems for the planer stationary MHD equations with growth at infinity. arXiv:1903.05989 [math.AP]
Wang, W., Wang, Y.: Liouville-type theorems for the stationary MHD equations in 2D. Nonlinearity 32(11), 4483–4505 (2019)
Wang, W., Zhang, Z.: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal. 45(5), 2666–2677 (2013)
Wang, W., Zhang, Z.: Regularity of weak solutions for the Navier-Stokes equations in the class \(l^\infty (BMO^{-1})\). Commun. Contemp. Math. 14(3), 1250020 (2012)
Wu, S.: Analytic dependence of Riemann mappings for bounded domains and minimal surfaces. Commun. Pure Appl. Math. 46(10), 1303–1326 (1993)
Yuan, B., Xiao, Y.: Liouville-type theorems for the 3D stationary Navier–Stokes, MHD and Hall-MHD equations. J. Math. Anal. Appl. 491(2), 124343 (2020)
Zhang, Z., Yang, X., Qiu, S.: Remarks on Liouville type result for the 3D Hall-MHD system. J. Partial Differ. Equ. 28(3), 286–290 (2015)
Acknowledgements
W. Wang was supported by NSFC under Grant 12071054 and 11671067.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by David Nicholls.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, X., Li, S. & Wang, W. Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations. J Nonlinear Sci 32, 12 (2022). https://doi.org/10.1007/s00332-021-09768-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-021-09768-4