Skip to main content
Log in

Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this note, we investigate Liouville-type theorems for the steady three-dimensional MHD and Hall-MHD equations and show that the velocity field u and the magnetic field B are vanishing provided that \(B\in L^{6,\infty }(\mathbb {R}^3)\) and \(u\in BMO^{-1}(\mathbb {R}^3)\), which state that the velocity field plays an important role. Moreover, the similar result holds in the case of partial viscosity or diffusivity for the three-dimensional MHD equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. 15(3), 583–616 (2013)

    Article  MathSciNet  Google Scholar 

  • Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  Google Scholar 

  • Carrillo, B., Pan, X., Zhang, Q., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237(3), 1383–1419 (2020)

    Article  MathSciNet  Google Scholar 

  • Chae, D.: Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326, 37–48 (2014)

    Article  MathSciNet  Google Scholar 

  • Chae, D.: Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system. J. Math. Fluid Mech. 23(1), 21 (2021)

    Article  MathSciNet  Google Scholar 

  • Chae, D., Degond, P., Liu, J.-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 555–565 (2014)

    Article  MathSciNet  Google Scholar 

  • Chae, D., Weng, S.: Liouville type theorems for the steady axially symmetric Navier–Stokes and Magnetohydrodynamic equations. Dis. Continuous Dyn. Syst. 36(10), 5267–5285 (2016)

    Article  MathSciNet  Google Scholar 

  • Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in \(R^3\). J. Differ. Equ. 261(10), 5541–5560 (2016)

    Article  Google Scholar 

  • Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier–Stokes equations. Calc. Var. Partial Differ. Equ. 58(3), 11 (2019)

    Article  MathSciNet  Google Scholar 

  • Chae, D., Wolf, J.: On Liouville type theorems for the stationary MHD and Hall-MHD systems. arXiv:1812.04495

  • De Nitti, N., Hounkpe, F., Schulz, S.: On Liouville-type theorems for the 2D stationary MHD equations. arXiv:2103.00551 [math.AP]

  • Fan, H., Wang, M.: The Liouville type theorem for the stationary magnetohydrodynamic equations. J. Math. Phys. 62, 031503 (2021). https://doi.org/10.1063/5.0036229

    Article  MathSciNet  MATH  Google Scholar 

  • Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, Steady-state problems, Second edition, p. xiv+1018. Springer, New York (2011)

    MATH  Google Scholar 

  • Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29(1), 190–197 (2019)

    Article  MathSciNet  Google Scholar 

  • Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(2), 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  • Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  • He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)

    Article  MathSciNet  Google Scholar 

  • Koch, G., Nadirashvili, N., Seregin, G., Sverak, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83–105 (2009)

    Article  MathSciNet  Google Scholar 

  • Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  • Korobkov, M., Pileckas, K., Russo, R.: The Liouville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence of swirl. J. Math. Fluid Mech. 17, 287–293 (2015)

    Article  MathSciNet  Google Scholar 

  • Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions. J. Funct. Anal. 272, 804–818 (2017)

    Article  MathSciNet  Google Scholar 

  • Leray, J.: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose lhydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  • Li, Z., Liu, P., Niu, P.: Remarks on Liouville type theorems for the 3D stationary MHD equations. Bull. Korean Math. Soc. 57(5), 1151–1164 (2020)

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Pan, X.: Liouville theorem of the 3D stationary MHD system: for D-solutions converging to non-zero constant vectors. NoDEA Nonlinear Differ. Equ. Appl. 28(2), 14 (2021)

    Article  MathSciNet  Google Scholar 

  • Nguyen, A.D., Jesus, I.D., Nguyen, Q.: Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces. Nonlinear Anal. 173, 146–153 (2018)

    Article  MathSciNet  Google Scholar 

  • O’Neil, R.: Convolution operators and \(L^{p, q}\) spaces. Duke Math J. 30, 129–142 (1963)

  • Politano, H., Pouquet, A., Sulem, P.-L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995)

    Article  MathSciNet  Google Scholar 

  • Schnack, D. D.: Lectures in magnetohydrodynamics. With an appendix on extended MHD. Lecture Notes in Physics, 780. Springer, Berlin, pp. xvi+323 (2009)

  • Schulz, S.: Liouville type theorem for the stationary equations of magneto-hydrodynamics. Acta Math. Sci. 39B(2), 491–497 (2019)

    Article  MathSciNet  Google Scholar 

  • Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29, 2191–2195 (2016)

    Article  MathSciNet  Google Scholar 

  • Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra Anal. 30(2), 238–248 (2018)

    MathSciNet  Google Scholar 

  • Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. Algebra i Analiz 31 (2019), no. 2, 269–278; reprinted in St. Petersburg Math. J. 31 (2020), no. 2, 387–393

  • Tsai, T.-P.:, Lectures on Navier-Stokes equations. Graduate Studies in Mathematics, 192. American Mathematical Society, Providence, RI, 2018. xii+224 pp. ISBN: 978-1-4704-3096-2

  • Wang, W.: Liouville-type theorems for the planer stationary MHD equations with growth at infinity. arXiv:1903.05989 [math.AP]

  • Wang, W., Wang, Y.: Liouville-type theorems for the stationary MHD equations in 2D. Nonlinearity 32(11), 4483–4505 (2019)

    Article  MathSciNet  Google Scholar 

  • Wang, W., Zhang, Z.: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal. 45(5), 2666–2677 (2013)

    Article  MathSciNet  Google Scholar 

  • Wang, W., Zhang, Z.: Regularity of weak solutions for the Navier-Stokes equations in the class \(l^\infty (BMO^{-1})\). Commun. Contemp. Math. 14(3), 1250020 (2012)

    Article  MathSciNet  Google Scholar 

  • Wu, S.: Analytic dependence of Riemann mappings for bounded domains and minimal surfaces. Commun. Pure Appl. Math. 46(10), 1303–1326 (1993)

    Article  MathSciNet  Google Scholar 

  • Yuan, B., Xiao, Y.: Liouville-type theorems for the 3D stationary Navier–Stokes, MHD and Hall-MHD equations. J. Math. Anal. Appl. 491(2), 124343 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, Z., Yang, X., Qiu, S.: Remarks on Liouville type result for the 3D Hall-MHD system. J. Partial Differ. Equ. 28(3), 286–290 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Wang was supported by NSFC under Grant 12071054 and 11671067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Wang.

Additional information

Communicated by David Nicholls.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, S. & Wang, W. Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations. J Nonlinear Sci 32, 12 (2022). https://doi.org/10.1007/s00332-021-09768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09768-4

Keywords

Mathematics Subject Classification

Navigation