Skip to main content
Log in

Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The any multi-component nonlinear Schrödinger (alias n-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n-NLS equations by using the loop group theory, an explicit \(\left( n+1\right) \)-multiple root of a characteristic polynomial of degree \((n+1)\) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials \({\mathcal {F}}_\ell (z)\), which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • Akhmediev, N., Królikowski, W., Snyder, A.W.: Partially coherent solitons of variable shape. Phys. Rev. Lett. 81, 4632 (1998)

    Article  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675 (2009)

    Article  MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  • Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Discrete rogue waves of the Ablowitz–Ladik and Hirota equations. Phys. Rev. E 81, 046602 (2010)

    Article  MathSciNet  Google Scholar 

  • Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  • Bandelow, U., Akhmediev, N.: Persistence of rogue waves in extended nonlinear Schrödinger equations: integrable Sasa–Satsuma case. Phys. Lett. A 376, 1558 (2012)

    Article  MATH  Google Scholar 

  • Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  • Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)

    Article  Google Scholar 

  • Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  Google Scholar 

  • Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. J. Fluid Mech. 27, 417 (1967)

    Article  MATH  Google Scholar 

  • Benney, D., Newell, A.C.: The propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133–139 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 72, 1722–1805 (2019)

    Article  MATH  Google Scholar 

  • Bilman, D., Ling, L., Miller, P.D.: Extreme superposition: Rogue waves of infinite order and the Painleve-III hierarchy. Duke Math. J. 169, 671–760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Bludov, Y.V., Konotop, V., Akhmediev, N.: Vector rogue waves in binary mixtures of Bose–Einstein condensates. Eur. Phys. J. Spec. Top. 185, 169–180 (2010)

    Article  Google Scholar 

  • Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  • Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)

    Article  Google Scholar 

  • Chen, S.: Twisted rogue-wave pairs in the Sasa–Satsuma equation. Phys. Rev. E 88, 023202 (2013)

    Article  Google Scholar 

  • Chen, S., Mihalache, D.: Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A 48, 215202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S., Song, L.-Y.: Rogue waves in coupled Hirota systems. Phys. Rev. E 87, 032910 (2013)

    Article  Google Scholar 

  • Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Faddeev, L., Takhtajan, L.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  • Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, New York (2015)

    Book  MATH  Google Scholar 

  • Gerdjikov, V.S., Grahovski, G.G., Ivanov, R.I., Kostov, N.A.: \(N\)-wave interactions related to simple lie algebras. \({{\mathbb{Z}}}_2\)-reductions and soliton solutions. Inv. Probl. 17, 999–1015 (2001)

    Article  MATH  Google Scholar 

  • Gerdjikov, V.S., Grahovski, G.G., Kostov, N.A.: On \(N\)-wave type systems and their gauge equivalent. Eur. Phys. J. B 29, 243–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, B.-L., Ling, L.-M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    Article  Google Scholar 

  • Guo, B., Ling, L., Liu, Q.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  • Guo, B., Tian, L., Yan, Z., Ling, L., Wang, Y.: Rogue Waves: Mathematical Theory and Applications in Physics (De Gruyter, Berlin, 2017)

  • Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • He, J., Zhang, H., Wang, L., Porsezian, K., Fokas, A.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013a)

    Article  Google Scholar 

  • He, J., Zhang, H., Wang, L., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  • Kaup, D.J.: Closure of the squared Zakharov–Shabat eigenstates. J. Math. Anal. Appl. 54, 849–864 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaup, D.J.: A perturbation expansion for the Zakharov–Shabat inverse scattering transform. SIAM J. Appl. Math. 31, 121–133 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    Article  MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Phys. Rev. E 88, 013207 (2013)

    Article  Google Scholar 

  • Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  • Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  • Kraus, D., Biondini, G., Kovačič, G.: The focusing Manakov system with nonzero boundary conditions. Nonlinearity 28, 3101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., Wu, Z., Wang, L., He, J.: High-order rogue waves for the Hirota equation. Ann. Phys. 334, 198–211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ling, L., Zhao, L.C.: Modulational instability and homoclinic orbit solutions in vector nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 72, 449–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ling, L., Guo, B., Zhao, L.-C.: High-order rogue waves in vector nonlinear Schrödinger equations. Phys. Rev. E 89, 041201 (2014)

    Article  Google Scholar 

  • Ling, L., Zhao, L.-C., Guo, B.: Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 32, 285–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ling, L., Zhao, L.-C., Yang, Z., Guo, B.: Generation mechanisms of fundamental rogue wave spatial-temporal structure. Phys. Rev. E 96, 022211 (2017)

    Article  MathSciNet  Google Scholar 

  • Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: J. Opt. B Quantum Semiclassical Opt. 7, R53 (2005)

  • Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys.-JETP 38, 248–253 (1974)

    Google Scholar 

  • Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation. Ann. Math. 174, 757–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183, 563–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Matsuno, Y.: The bright \(N\)-soliton solution of a multi-component modified nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 495202 (2011)

    Article  MATH  Google Scholar 

  • Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, New York (1991)

  • Menyuk, C.R.: Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum Electron. 23, 174 (1987)

    Article  Google Scholar 

  • Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  • Ostrowskii, L.A.: Propagation of wave packets and space-time self-focussing in a nonlinear medium. Sov. Phys. JETP 24, 797–800 (1967)

    Google Scholar 

  • Pelinovsky, E., Kharif, C. (eds.): Extreme Ocean Waves, 2nd edn. Springer, New York (2016)

    MATH  Google Scholar 

  • Peregrine, D.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B Appl. Math. 25, 16 (1983)

    Article  MATH  Google Scholar 

  • Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  • Scott, A.C.: The vibrational structure of Davydov solitons. Phys. Scr. 25, 651–658 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Article  Google Scholar 

  • Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  • Tao, Y., He, J.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  • Terng, C.-L., Uhlenbeck, K.: Bäcklund transformations and loop group actions. Commun. Pure. Appl. Math. 53, 1 (2000)

    Article  MATH  Google Scholar 

  • Wang, L., Yan, Z.: Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials. Appl. Math. Lett. 111, 106670 (2021)

    Article  MATH  Google Scholar 

  • Wen, X.Y., Yan, Z.: Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation. Chaos 25, 123115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wen, X.Y., Yan, Z.: Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz–Ladik equation. J. Math. Phys. 59, 073511 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Wen, X.Y., Yang, Y., Yan, Z.: Generalized perturbation (\(n\), \(M\))-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E 92, 012917 (2015)

    Article  MathSciNet  Google Scholar 

  • Wen, X.Y., Yan, Z., Malomed, B.A.: Higher-order vector discrete rogue-wave states in the coupled Ablowitz–Ladik equations: exact solutions and stability. Chaos 26, 123110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, Z.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)

    Article  MATH  Google Scholar 

  • Yan, Z.: Nonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coefficients. Phys. Lett. A 374, 672–679 (2010)

    Article  MATH  Google Scholar 

  • Yan, Z.: Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  MATH  Google Scholar 

  • Yang, B., Yang, J.: Universal patterns of rogue waves. Physica D 419, 132850 (2021)

    Article  Google Scholar 

  • Yang, Y., Yan, Z., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Yeh, C., Bergman, L.: Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse. Phys. Rev. E 57, 2398 (1998)

    Article  Google Scholar 

  • Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

  • Zakharov, V.E., Ostrovsky, L.A.: Modulational instability: The beginning. Physica (Amsterdam) 238D, 540 (2009)

    MATH  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972)

    MathSciNet  Google Scholar 

  • Zhang, G., Ling, L., Yan, Z., Konotop, V.V.: Parity-time-symmetric rational vector rogue wave solutions in any \(n\)-component nonlinear Schrödinger models. Chaos 31, 063120 (2021)

  • Zhang, G., Yan, Z.: Three-component nonlinear Schrödinger equations: modulational instability, \(N\)th-order vector rational and semi-rational rogue waves, and dynamics. Commun. Nonlinear Sci. Numer. Simul. 62, 117–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, G., Yan, Z., Wen, X.Y., Chen, Y.: Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations. Phys. Rev. E 95, 042201 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhang, G., Yan, Z., Wen, X.Y.: Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations. Proc. R. Soc. A 473, 20170243 (2017)

    Article  MATH  Google Scholar 

  • Zhang, G., Yan, Z., Wen, X.Y.: Three-wave resonant interactions: multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics. Physica D 366, 27–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, G., Yan, Z., Wang, L.: The general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structures. Proc. R. Soc. A 475, 20180625 (2019)

    Article  MathSciNet  Google Scholar 

  • Zhao, L.-C., Liu, J.: Localized nonlinear waves in a two-mode nonlinear fiber. J. Opt. Soc. Am. B 29, 3119–3127 (2012)

    Article  Google Scholar 

  • Zhao, L.-C., Liu, J.: Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. Phys. Rev. E 87(1), 013201 (2013)

    Article  Google Scholar 

  • Zhao, L.-C., Xin, G.-G., Yang, Z.-Y.: Rogue-wave pattern transition induced by relative frequency. Phys. Rev. E 90, 022918 (2014)

    Article  Google Scholar 

  • Zhao, L.-C., Guo, B., Ling, L.: High-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II. J. Math. Phys. 57, 043508 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions. G.Z. acknowledges support from the China Postdoctoral Science Foundation under Grant No. 2019M660600, L.L. is supported by the National Natural Science Foundation of China (Grant No. 11771151), the Guangzhou Science and Technology Program of China (Grant No. 201904010362), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019MS110). Z.Y. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 11925108 and 11731014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Yan.

Additional information

Communicated by Robert Buckingham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Proof of Lemma 1

Proof

Since the coefficient matrices \({\mathbf {U}}\) and \({\mathbf {V}}\) have the symmetric relationships:

$$\begin{aligned} {\mathbf {U}}(\lambda ;x,t)=-{\mathbf {U}}^{\dag }(\lambda ^*;x,t),\quad {\mathbf {V}}(\lambda ;x,t)=-{\mathbf {V}}^{\dag }(\lambda ^*;x,t), \end{aligned}$$
(134)

thus it follows that the matrix function \(\Phi ^{\dag }(\lambda ^*;x,t)\) satisfies the adjoint Lax pair:

$$\begin{aligned} -\Phi _x^{\dag }(\lambda ^*;x,t)=\Phi ^{\dag }(\lambda ^*;x,t) {\mathbf {U}}(\lambda ;x,t),\quad -\Phi _t^{\dag }(\lambda ^*;x,t)=\Phi ^{\dag }(\lambda ^*;x,t) {\mathbf {V}}(\lambda ;x,t)\nonumber \\ \end{aligned}$$
(135)

if \(\Phi (\lambda ;x,t)\) satisfies the Lax pair (4) and (5). On the other hand, the inverse matrix function \(\Phi ^{-1}(\lambda ;x,t)\) also satisfies the adjoint Lax pair (135). By the uniqueness and existence of differential equations and \(\Phi (\lambda ;0,0)={\mathbb {I}}\), we complete the proof. \(\square \)

Appendix B: The Proof of Lemma 2

Proof

The inverse matrix function \({\mathbf {N}}^{-1}(\lambda ;x,t)\) satisfies the adjoint linear spectral problem

$$\begin{aligned} \frac{\partial }{\partial x}\left( {\mathbf {N}}^{-1}(\lambda ;x,t)\right) =-{\mathbf {N}}^{-1}(\lambda ;x,t) {\mathbf {U}}(\lambda ;x,t), \end{aligned}$$
(136)

and then we have the following stationary zero-curvature equations:

$$\begin{aligned} \frac{\partial }{\partial x}\Theta (\lambda ;x,t)=\left[ {\mathbf {U}}(\lambda ;x,t),\Theta (\lambda ;x,t)\right] , \end{aligned}$$
(137)

by \(\Theta (\lambda ;x,t)\equiv {\mathbf {N}}(\lambda ;x,t)\sigma _3{\mathbf {N}}^{-1}(\lambda ;x,t)={\mathbf {M}}(\lambda ;x,t)\sigma _3{\mathbf {M}}^{-1}(\lambda ;x,t).\) The above coefficients \(\Theta _j(x,t)\) can be determined recursively:

$$\begin{aligned} \begin{aligned} \Theta _{j+1}^{\mathrm{off}}&=-\frac{1}{2}\sigma _3\left( \mathrm {i}\,\Theta _{j,x}^{\mathrm{off}}+\left[ {\mathbf {Q}}, \Theta _j^{\mathrm{diag}}\right] \right) , \\ \Theta _{j,x}^{\mathrm{diag}}&=\mathrm {i}\left[ {\mathbf {Q}}, \Theta _j^{\mathrm{off}}\right] . \end{aligned} \end{aligned}$$
(138)

On the other hand, it is readily to see that \(\Theta ^2(\lambda ;x,t)={\mathbb {I}}\), which implies that

$$\begin{aligned} \Theta _j^{\mathrm{diag}}=-\frac{\sigma _3}{2}\sum _{s=1}^{j-1}\left( \Theta _j^{\mathrm{diag}}\Theta _{s-j}^{\mathrm{diag}}+\Theta _j^\mathrm{off}\Theta _{s-j}^{\mathrm{off}}\right) ,\qquad j\ge 2; \qquad \Theta _1^{\mathrm{diag}}=0. \end{aligned}$$
(139)

Through the first equation of (138) and equation (139), we complete the proof. \(\square \)

Appendix C.  MI Analysis of the Plane-Waves

Here, we utilize the squared eigenfunction method (Kaup 1976a, b to construct the solutions of linearized vector NLS equations. To this purpose, we depart from the stationary zero curvature equation:

$$\begin{aligned} \Psi _x=[{\mathbf {U}},\Psi ],\qquad \Psi _t=[{\mathbf {V}},\Psi ],\qquad \Psi =\begin{pmatrix} \Psi _{11} &{}\Psi _{12} \\ \Psi _{21} &{} \Psi _{22} \\ \end{pmatrix}, \end{aligned}$$
(140)

where the matrices \(\Psi _{11}\), \(\Psi _{12}\), \(\Psi _{21}\) and \(\Psi _{22}\) have the shape \(1\times 1\), \(1\times n\), \(n\times 1\) and \(n\times n\), respectively. Then, we write the corresponding component form:

$$\begin{aligned} \begin{aligned} \Psi _{11,x}=&\mathrm {i}\left( {\mathbf {q}}^{\dag } \Psi _{21}-\Psi _{12}{\mathbf {q}}\right) , \\ \Psi _{12,x}=&\mathrm {i}\left( 2\lambda \Psi _{12}+{\mathbf {q}}^{\dag }\Psi _{22}-\Psi _{11}{\mathbf {q}}^{\dag }\right) , \\ \Psi _{21,x}=&\mathrm {i}\left( {\mathbf {q}}\Psi _{11}-\Psi _{22}{\mathbf {q}}-2\lambda \Psi _{21}\right) , \\ \Psi _{22,x}=&\mathrm {i}\left( {\mathbf {q}}\Psi _{12}-\Psi _{21}{\mathbf {q}}^{\dag }\right) . \end{aligned} \end{aligned}$$
(141)

Further, taking the second-order derivative of \(\Psi _{12}\) and \(\Psi _{21}\) with respect to x, together with equation (141) we obtain that

$$\begin{aligned} \begin{aligned} \Psi _{12,xx}=&-2\left[ \left( \lambda {\mathbf {q}}^{\dag }-\frac{\mathrm {i}}{2}{\mathbf {q}}_x^{\dag }\right) \Psi _{22}-\Psi _{11}\left( \lambda {\mathbf {q}}^{\dag }-\frac{\mathrm {i}}{2}{\mathbf {q}}_x^{\dag }\right) +2\lambda ^2\Psi _{12}\right] \\&-{\mathbf {q}}^{\dag }\left( {\mathbf {q}}\Psi _{12}-\Psi _{21}{\mathbf {q}}^{\dag }\right) +\left( {\mathbf {q}}^{\dag }\Psi _{21}- \Psi _{12}{\mathbf {q}}\right) {\mathbf {q}}^{\dag }, \\ \Psi _{21,xx}=&2\left[ (\lambda {\mathbf {q}}+\frac{\mathrm {i}}{2}{\mathbf {q}}_x)\Psi _{11}-\Psi _{22}(\lambda {\mathbf {q}}+\frac{\mathrm {i}}{2}{\mathbf {q}}_x)-2\lambda ^2\Psi _{21}\right] \\&-\left( {\mathbf {q}}^{\dag } \Psi _{21}-\Psi _{12}{\mathbf {q}}\right) +\left( {\mathbf {q}}\Psi _{12}-\Psi _{21}{\mathbf {q}}^{\dag }\right) {\mathbf {q}}. \end{aligned} \end{aligned}$$
(142)

Similarly, for the t-part of stationary zero-curvature equations, we write the corresponding component form:

$$\begin{aligned} \begin{aligned} \Psi _{11,t}&=V_{12}\Psi _{21}-\Psi _{12}V_{21}, \\ \Psi _{12,t}&=V_{12}\Psi _{22}-\Psi _{11}V_{12}+V_{11}\Psi _{12}-\Psi _{12}V_{22}, \\ \Psi _{21,t}&=V_{21}\Psi _{11}-\Psi _{22}V_{21}+V_{22}\Psi _{21}-\Psi _{21}V_{11}, \\ \Psi _{22,t}&=V_{21}\Psi _{12}+V_{22}\Psi _{22}-\Psi _{21}V_{12}-\Psi _{22}V_{22}, \end{aligned} \end{aligned}$$
(143)

where

$$\begin{aligned} \begin{aligned} V_{11}=&\mathrm {i}\left( \lambda ^2-\frac{1}{2}{\mathbf {q}}^{\dag }\Lambda {\mathbf {q}}\right) , \quad V_{12}=\mathrm {i}\left( \lambda {\mathbf {q}}^{\dag }\Lambda -\frac{\mathrm {i}}{2}{\mathbf {q}}^{\dag }_x\Lambda \right) , \\ V_{21}=&\mathrm {i}\left( \lambda {\mathbf {q}}+\frac{\mathrm {i}}{2}{\mathbf {q}}_x\right) , \quad V_{22}=\mathrm {i}\left( \lambda ^2{\mathbb {I}}_n+\frac{1}{2}{\mathbf {q}}{\mathbf {q}}^{\dag }\Lambda \right) . \\ \end{aligned} \end{aligned}$$
(144)

Combining with equations (142) and (143), we will obtain the linearized equations:

$$\begin{aligned} \begin{aligned} \mathrm {i}\Psi _{21,t}&=-\left[ \frac{1}{2}\Psi _{21,xx}+\left( \Psi _{21}{\mathbf {q}}^{\dag }{\mathbf {q}}-{\mathbf {q}}\Psi _{12}{\mathbf {q}} +{\mathbf {q}}{\mathbf {q}}^{\dag }\Psi _{21}\right) \right] ,\\ \mathrm {i}\Psi _{12,t}&=\left[ \frac{1}{2}\Psi _{12,xx}+\left( \Psi _{12}{\mathbf {q}}{\mathbf {q}}^{\dag } -{\mathbf {q}}^{\dag }\Psi _{21}{\mathbf {q}}^{\dag }+{\mathbf {q}}^{\dag }{\mathbf {q}}\Psi _{12}\right) \right] . \end{aligned} \end{aligned}$$
(145)

Moreover, the symmetry relationship \(\Psi _{12}=-\Psi _{21}^{\dag }\) guarantees the above linearized equation to satisfy the linearized multi-component NLS equations.

We construct the solutions of \(\Psi \) by the wave-function of Lax pair. Suppose we have a vector solution \(\phi _i(\lambda )\) for Lax pair, by the symmetric proposition we know that \(\phi _j^{\dag }(\lambda ^*)\) satisfies the adjoint Lax pair, which implies that the matrix function \(\Psi =\phi _i(\lambda )\phi _j^{\dag }(\lambda ^*)\) solves the stationary zero-curvature equations (140), where \(\phi _i(\lambda )=[\phi _{i,1}(\lambda ), \phi _{i,2}^{\mathrm {T}}(\lambda )]^{\mathrm {T}}\). Similarly, we know that \(\Psi =\phi _j(\lambda ^*)\phi _i^{\dag }(\lambda )\) also solves equation (145). Since equation (145) is unrelated with the spectral parameters \(\lambda \). Thus, the solutions

$$\begin{aligned} \phi _{i,2}(\lambda )\phi _{j,1}^*(\lambda ^*)-\phi _{j,2}(\lambda ^*)\phi _{i,1}^*(\lambda ) \end{aligned}$$
(146)

solve the linearized multi-component NLS equations automatically.

In what follows, we consider how to use the above procedures to solve linear stability analysis for the multi-component NLS equation with the plane-wave solution (42). Suppose we consider the perturbation form:

$$\begin{aligned} \Psi _{21}=\begin{pmatrix} \left( g_1\mathrm {e}^{\mathrm {i}\xi ( x+\zeta t)}+f_1^*\mathrm {e}^{-\mathrm {i}\xi (x+\zeta ^* t)}\right) \mathrm {e}^{\mathrm {i}(b_1x+c_1t)}\\ \left( g_2\mathrm {e}^{\mathrm {i}\xi ( x+\zeta t)}+f_2^*\mathrm {e}^{-\mathrm {i}\xi (x+\zeta ^* t)}\right) \mathrm {e}^{\mathrm {i}(b_2x+c_2t)}\\ \vdots \\ \left( g_n\mathrm {e}^{\mathrm {i}\xi ( x+\zeta t)}+f_n^*\mathrm {e}^{-\mathrm {i}\xi (x+\zeta ^* t)}\right) \mathrm {e}^{\mathrm {i}(b_nx+c_nt)} \end{pmatrix}, \end{aligned}$$
(147)

and \(\phi _i(\lambda )={\mathbf {G}}L_i(\lambda )\mathrm {e}^{\mathrm {i}[\xi _i(\lambda )-\lambda ]x+\eta _i(\lambda ) t}\) and \(\phi _j(\lambda )={\mathbf {G}}L_j(\lambda )\mathrm {e}^{\mathrm {i}[\xi _j(\lambda )-\lambda ]x+\eta _j(\lambda ) t}\), where the vector \(L_{i/j}(\lambda )\) is the eigenvector of \({\mathbf {H}}\) in equation (44), provides a solution

$$\begin{aligned} g_k=\frac{a_i}{\xi _i(\lambda )+b_k},\qquad f_k=-\frac{a_i}{\xi _j(\lambda )+b_k} \end{aligned}$$
(148)

where \(k=1,2,\ldots , n\) and

$$\begin{aligned} \xi =\xi _i(\lambda )-\xi _j(\lambda )\in {\mathbb {R}},\qquad \zeta =\frac{\gamma }{2}(\xi _i(\lambda )+\xi _j(\lambda )) \end{aligned}$$
(149)

the parameter \(\xi \) determines the perturbation frequency and the parameter \(\zeta \) determines the gain index. As for the fixed \(\xi \), the parameter \(\xi _i(\lambda )\) can be determined by the following equations

$$\begin{aligned} 1+\sum _{k=1}^n\frac{s_ka_k^2}{(\xi _i(\lambda )+b_k)((\xi _i(\lambda )-\xi +b_k))}=0. \end{aligned}$$
(150)

For the multi-component NLS equations, the gain index \(\zeta =\xi _i(\lambda )-\frac{\xi }{2}\) will solve the equations

$$\begin{aligned} 1+\sum _{k=1}^n\frac{s_ka_k^2}{(\zeta +b_k)^2-\frac{\xi ^2}{4}}=0. \end{aligned}$$
(151)

Appendix D.  Asymptotic Behaviors of \({\mathbf {q}}^{[1]_4}\)

Case 1. We consider four simple roots of the governing polynomial \({\mathcal {F}}_4(z)\). For instance, as \(\kappa _0=9, \kappa _2=-10, \kappa _1=\kappa _3=0\) are taken for the line-typed structure along x-axis, four roots of \({\mathcal {F}}_4\) are \(z=\pm 1, \pm 3\). As \(\kappa _0=9, \kappa _2=10, \kappa _1=\kappa _3=0\) are taken for the line-typed structure along t-axis, four roots of \({\mathcal {F}}_4\) are \(z=\pm \mathrm {i}, \pm 3\mathrm {i}\). As \(\kappa _0=1, \kappa _1=\kappa _2=\kappa _3=0\) are taken for the square-typed structure, four roots of \({\mathcal {F}}_4\) are \(z=\mathrm {e}^{\left( 2s-1\right) \pi \mathrm {i}/4}, s=1, 2, 3, 4\). Then, we yield the formula of asymptotic behavior

$$\begin{aligned} q_j^{[1]_4}\!=\!q_j^\mathrm {bg}\bigg [1\!+\!\sum _{\delta _1=0}^1\sum _{\delta _2=0}^1R_j\left( x-x_{\delta _1, \delta _2}, t-t_{\delta _1, \delta _2}\right) \!\bigg ]\mathrm {e}^{-2\mathrm {i}\omega _j}\!+\!{\mathcal {O}}\left( \frac{1}{h^{2}}\!\right) \!, \,\, h^{2}\rightarrow +\infty .\nonumber \\ \end{aligned}$$
(152)

with the linear superposition of four single rogue waves in the leading term, where

  • \(x_{\delta _1, 0}=(-1)^{\delta _1}(h+(\kappa _{0, 0}+\kappa _{2, 0})/16\zeta )+(\kappa _{1, 0}+\kappa _{3, 0}-8)/16\zeta , \, x_{\delta _1, 1}=(-1)^{\delta _1}(3h-(9\kappa _{2, 0}+\kappa _{0, 0})/48\zeta )-(\kappa _{1, 0}+9\kappa _{3, 0}+8)/16\zeta , \, t_{\delta _1, \delta _2}=0\) for the case \(\kappa _0=9, \kappa _2=-10, \kappa _1=\kappa _3=0\) (see Fig. 4a, b);

  • \(x_{\delta _1, 0}=-(\kappa _{1, 0}-\kappa _{3, 0}+4)/16\zeta , \, t_{\delta _1, 0}=(-1)^\delta (h+(\kappa _{0, 0}-\kappa _{2, 0})/16\zeta )/\zeta , \, x_{\delta _1, 1}=(\kappa _{1, 0}-9\kappa _{3, 0}+36)/16\zeta ,\, t_{\delta _1, 1}=(-1)^\delta (3h-(\kappa _{0, 0}-9\kappa _{2, 0})/48\zeta )/\zeta \) (see Fig. 4c, d);

  • \(x_{\delta _1, \delta _2}=(-1)^{\delta _1}(h/\sqrt{2}+\sqrt{2}(\kappa _{0, 0}-\kappa _{2, 0})/8\zeta )+(1-\kappa _{3, 0})/4\zeta , \, t_{\delta _1, \delta _2}=(-1)^{\delta _2}(h/\sqrt{2}+\sqrt{2}(\kappa _{0, 0}-\kappa _{2, 0})/8\zeta )/\zeta +(-1)^{\delta _2}(\kappa _{1, 0}+3)/4\zeta \) (see Fig. 4e, f).

Case 2. For the second case, we consider a double root and two simple roots of the governing polynomial \({\mathcal {F}}_4\), which arrange a line-typed structure. For instance, as \(\kappa _2=-1, \kappa _0=\kappa _1=\kappa _3=0\) are taken, then the governing polynomial \({\mathcal {F}}_4\) has a double root \(z=0\) and two simple root \(z=\pm 1\). Under the constraint \(\kappa _{0, 0}=0\), we deduce the formula of asymptotic behavior

$$\begin{aligned} q_j^{[1]_4}=q_j^\mathrm {bg}\left[ 1+p_{j, 2}\left( x, t\right) +\sum _{\delta =0}^1R_j\left( x-x_\delta , t\right) \right] \mathrm {e}^{-2\mathrm {i}\omega _j} +{\mathcal {O}}\left( \frac{1}{h}\right) , \,\, h\rightarrow +\infty ,\nonumber \\ \end{aligned}$$
(153)

where \(x_\delta =(-1)^\delta (h-\kappa _{2, 0}/2\zeta )-(\kappa _{3, 0}+\kappa _{1, 0}+1)/2\zeta \) and the parameters of \(p_{j, 2}\) are \(\alpha _0=\kappa _{0, 1}, \alpha _1=\kappa _{1, 0}\mathrm {i}, \alpha _2=2\zeta \). The leading term is linear superposition of two single rogue waves located at \(\left( x_{\delta }, 0\right) \) and a double rogue wave (see Fig. 5a, b).

Case 3. For the third case, we consider a two real double roots of the governing polynomial \({\mathcal {F}}_4\). For instance, we can take \(\kappa _2=-2, \kappa _1=1, \kappa _0=\kappa _3=0\), then the governing polynomial \({\mathcal {F}}_4\) has two double real roots \(z=\pm 1\). Under the constraint \(\kappa _{3, 0}+\kappa _{1, 0}=\kappa _{2, 0}+\kappa _{0, 0}=0\), we derive the formula of asymptotic behavior

$$\begin{aligned} q_j^{[1]_4}=q_j^\mathrm {bg}\bigg [1+\sum _{\delta =0}^1p_{j, 2}\left( x+\left( -1\right) ^\delta h^{2}, t\right) +\bigg ]\mathrm {e}^{-2\mathrm {i}\omega _j} +{\mathcal {O}}\left( \frac{1}{h^{2}}\right) , \,\, h^{2}\rightarrow +\infty .\nonumber \\ \end{aligned}$$
(154)

where the parameters of \(p_{j, 2}\) are \(\alpha _0=\kappa _{0, 0}+\kappa _{1, 0}, \alpha _1=-2(\kappa _{0, 1}+\kappa _{1, 1}+\kappa _{2, 1}+\kappa _{0, 0}^2)\mathrm {i}, \alpha _2=4\zeta \). The leading term is linear superposition of two double rogue waves (see Fig. 5c, d).

Case 4. For the fourth case, we consider a simple root and a triple root of \({\mathcal {F}}_4\) and the corresponding rogue waves arrange in a line. As we take \(\kappa _3=1, \kappa _0=\kappa _1=\kappa _2=0\), the governing polynomial \({\mathcal {F}}_4\) has a simple roots \(z=-1\) and a triple root \(z=0\). Under the constraint \(\kappa _{0, 0}=\kappa _{1, 0}=0\), we deduce the formula of asymptotic behavior

$$\begin{aligned} q_j^{[1]_4}=q_j^\mathrm {bg}\left[ 1+p_{j, 3}\left( x, t\right) +R_j\left( x-x_0, t\right) \right] \mathrm {e}^{-2\mathrm {i}\omega _j} +{\mathcal {O}}\left( \frac{1}{h}\right) , \,\, h\rightarrow +\infty ,\nonumber \\ \end{aligned}$$
(155)

where \(x_0=(2\kappa _{2, 0}-2\kappa _{3, 0}-1)/2\zeta -h\) and the parameters of \(p_{j, 3}\) are \(\alpha _0=\kappa _{0, 2}, \alpha _1=\mathrm {i}\kappa _{1, 1}, \alpha _2=-2\kappa _{2, 0}, \alpha _3=-6\mathrm {i}\zeta \). The leading term is linear superposition of a single rogue wave located at \(\left( x_0, 0\right) \) and a triple rogue wave (see Fig. 5e, f).

Case 5. For the fifth case, we consider a quadruple root of \({\mathcal {F}}_4\). For the convenience of the representation of the leading term of asymptotic formula, we define

$$\begin{aligned} p_{j, 4}=-\frac{2\mathrm {i}\zeta }{b_j-\mathrm {i}\zeta }\frac{\left( n+1\right) L_jL_0^*-{\mathbf {L}}^\dag {\mathbf {L}}}{{\mathbf {L}}^\dag {\mathbf {L}}},\quad j=1, 2, \ldots , n, \end{aligned}$$
(156)

where \({\mathbf {L}}, L_j's, L_0\) are defined in Eqs. (65) and (67) with \(\ell =4\). As we take \(\kappa _0=\kappa _1=\kappa _2=\kappa _3=0\), the governing polynomial \({\mathcal {F}}_4\) has a quadruple root \(z=0\). To obtain the rogue wave solution in the leading term of the asymptotic formula, the constraint \(\kappa _{0, 0}=\kappa _{0, 1}=\kappa _{0, 2}=\kappa _{1, 0}=\kappa _{1, 1}=\kappa _{2, 0}=0\) is posed. Then, \(q_j^{[1]_4}=q_j^\mathrm {bg}\left( 1+p_{j, 4}\right) \mathrm {e}^{-2\mathrm {i}\omega _j}\) with \(\alpha _0=\kappa _{0, 3}, \alpha _1=\mathrm {i}\kappa _{1, 2}, \alpha _2=-2\kappa _{2, 1}, \alpha _3=-6\kappa _{3, 0}\mathrm {i}, \alpha _4=24\zeta \). For other quadruple root of \({\mathcal {F}}_4\), we also have the formula of asymptotic behavior as \(h\rightarrow +\infty \). For instance, as \(\kappa _0=1, \kappa _1=-4, \kappa _2=6, \kappa _3=-4\), the governing polynomial \({\mathcal {F}}_4=\left( z-1\right) ^4\), which has a quadruple root \(z=1\). Under the constraint \(3\kappa _{0, 0}=\kappa _{2,0}=-\kappa _{1,0}=-3\kappa _{3,0},2\kappa _{0,1}=-\kappa _{1, 1}=2\kappa _{2, 1},\kappa _{0,2}=-\kappa _{1,2}\), we derive the formula of asymptotic behavior

$$\begin{aligned} q_j^{[1]_4}=q_j^\mathrm {bg}\left[ 1+p_{j, 4}\left( x-h^{2}, t\right) \right] \mathrm {e}^{-2\mathrm {i}\omega _j}+{\mathcal {O}}\left( \frac{1}{h^{2}}\right) . \end{aligned}$$
(157)

where the parameters of \(p_{j, 4}\) are \(\alpha _0=\kappa _{0, 3}, \alpha _1=\mathrm {i}\kappa _{1, 2}, \alpha _2=-2\kappa _{2, 1}, \alpha _3=-6\kappa _{3, 0}\mathrm {i}, \alpha _4=24\zeta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Ling, L. & Yan, Z. Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates. J Nonlinear Sci 31, 81 (2021). https://doi.org/10.1007/s00332-021-09735-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09735-z

Keywords

Mathematics Subject Classification

Navigation