Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature

Abstract

We develop a theory for distributed branch points and investigate their role in determining the shape and influencing the mechanics of thin hyperbolic objects. We show that branch points are the natural topological defects in hyperbolic sheets, they carry a topological index which gives them a degree of robustness, and they can influence the overall morphology of a hyperbolic surface without concentrating energy. We develop a discrete differential geometric approach to study the deformations of hyperbolic objects with distributed branch points. We present evidence that the maximum curvature of surfaces with geodesic radius R containing branch points grow sub-exponentially, \(O(e^{c\sqrt{R}})\) in contrast to the exponential growth \(O(e^{c' R})\) for surfaces without branch points. We argue that, to optimize norms of the curvature, i.e., the bending energy, distributed branch points are energetically preferred in sufficiently large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-like recursive buckling patterns.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Abramowitz, M., Stegun, I. A. (Eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992). Reprint of the 1972 edition

  2. Acharya, A., Venkataramani, S.C.: Mechanics of moving defects in growing sheets: 3-d, small deformation theory. Mater. Theory 4(1), 2 (2020)

    Google Scholar 

  3. Amar, M.B., Pomeau, Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1959), 729–755 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Amsler, M.-H.: Des surfaces à courbure négative constante dans l’espace à trois dimensions et de leurs singularités. Mathematische Annalen 130(3), 234–256 (1955)

    MathSciNet  MATH  Google Scholar 

  5. Anderson, J.: Hyperbolic Geometry. Springer, London (2005)

    Google Scholar 

  6. Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite Graphs and Their Applications. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  7. Audoly, B., Boudaoud, A.: ‘ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330(12), 831–836 (2002)

    MATH  Google Scholar 

  8. Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91(8), 086105 (2003)

    Google Scholar 

  9. Ball, J.M., Knowles, G.: A numerical method for detecting singular minimizers. Numer. Math. 51(2), 181–197 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Ration. Mech. Anal. 90(4), 325–388 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24(6), 1147–1176 (2014a)

    MathSciNet  MATH  Google Scholar 

  12. Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67(5), 693–747 (2014b)

    MathSciNet  MATH  Google Scholar 

  13. Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221(1), 143–181 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Bobenko, A.I., Eitner, U.: Painlevé Equations in the Differential Geometry of Surfaces, vol. 1753. Springer, Berlin (2000)

    Google Scholar 

  15. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure, volume 98 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)

  16. Borisov, Y.F.: On the connection between the spatial form of smooth surfaces and their intrinsic geometry. Vestnik Leningrad. Univ. 14(13), 20–26 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Borisov, Y.F.: Irregular surfaces of the class \(C^{1,\beta }\) with an analytic metric. Sibirsk. Mat. Zh. 45(1), 25–61 (2004). English translation in Siberian Math. J. 45 (2004), no. 1, 19–52

    MathSciNet  Google Scholar 

  18. Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. N.S. 1(2), 197–263 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Brezis, H., Nirenberg, L.: Degree theory and BMO. II. Compact manifolds with boundaries. Sel. Math. N.S. 2(3), 309–368 (1996). With an appendix by the authors and Petru Mironescu

    MathSciNet  MATH  Google Scholar 

  20. Cesari, L.: Optimization—Theory and Applications, volume 17 of Applications of Mathematics (New York). Springer, New York (1983). Problems with Ordinary Differential Equations

  21. Chopin, J., Démery, V., Davidovitch, B.: Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119(1–2), 137–189 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)

    MATH  Google Scholar 

  23. Conti, S., De Lellis, C., Székelyhidi, L., Jr.Jr.: \(h\)-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: Nonlinear Partial Differential Equations, volume 7 of Abel Symposium, pp. 83–116. Springer, Heidelberg (2012)

  24. Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227–18232 (2011)

    MATH  Google Scholar 

  25. Davidovitch, B., Sun, Y., Grason, G.M.: Geometrically incompatible confinement of solids. Proc. Natl. Acad. Sci. 116(5), 1483–1488 (2019)

    MathSciNet  MATH  Google Scholar 

  26. De Lellis, C., Inauen, D.: \(C^{1, \alpha }\) isometric embeddings of polar caps. Adv. Math. 363, 106996, 39 (2020)

    MATH  Google Scholar 

  27. De Lellis, C., Inauen, D., Székelyhidi Jr., L.: A Nash–Kuiper theorem for \(C^{1,1/5-\delta }\) immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam. 34(3), 1119–1152 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Dorfmeister, J.F., Sterling, I.: Pseudospherical surfaces of low differentiability. Adv. Geom. 16(1), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Efimov, N.V.: Impossibility of an isometric imbedding in Euclidean \(3\)-space of certain manifolds with negative Gaussian curvature. Dok. Akad. Nauk SSSR 146, 296–299 (1962)

    MathSciNet  Google Scholar 

  30. Efimov, N.V.: Generation of singularites on surfaces of negative curvature. Matematicheskii Sbornik 106(2), 286–320 (1964)

    MathSciNet  Google Scholar 

  31. Efrati, E., Klein, Y., Aharoni, H., Sharon, E.: Spontaneous buckling of elastic sheets with a prescribed non-Euclidean metric. Phys. D Nonlinear Phenom. 235(1), 29–32 (2007)

    Google Scholar 

  32. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Efrati, E., Sharon, E., Kupferman, R.: The metric description of elasticity in residually stressed soft materials. Soft Matter 9(34), 8187–8197 (2013)

    Google Scholar 

  34. Eisenhart, L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Ginn, London (1909)

    Google Scholar 

  35. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Phildelphia (1998)

    Google Scholar 

  36. Foss, M., Hrusa, W.J., Mizel, V.J.: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167(4), 337–365 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Friesecke, G., James, R.D., Müller, S.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. Comptes Rendus Mathematique 335(2), 201–206 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Gemmer, J.A., Venkataramani, S.C.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Gemmer, J.A., Venkataramani, S.C.: Defects and boundary layers in non-Euclidean plates. Nonlinearity 25(12), 3553 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Gemmer, J.A., Venkataramani, S.C.: Shape transitions in hyperbolic non-Euclidean plates. Soft Matter 9(34), 8151–8161 (2013)

    Google Scholar 

  42. Gemmer, J., Sharon, E., Shearman, T., Venkataramani, S.C.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. Europhys. Lett. 114(2), 24003 (2016)

    Google Scholar 

  43. Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton (1998)

    Google Scholar 

  44. Guven, J., Müller, M.M., Vázquez-Montejo, P.: Isometric bending requires local constraints on free edges. Math. Mech. Solids 24(12), 4051–4077 (2019). 2020/06/26

    MathSciNet  MATH  Google Scholar 

  45. Hamburger, H.: Über kurvennetze mit isolierten singularitäten auf geschlossenen flächen. Math. Z. 19(1), 50–66 (1924)

    MathSciNet  MATH  Google Scholar 

  46. Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, vol. 130. American Mathematical Society, Providence (2006)

    Google Scholar 

  47. Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)

    MathSciNet  MATH  Google Scholar 

  48. Hartman, P., Wintner, A.: On the asymptotic curves of a surface. Am. J. Math. 73(1), 149–172 (1951)

    MathSciNet  MATH  Google Scholar 

  49. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  50. Henderson, D.W., Taimina, D.: Crocheting the hyperbolic plane. Math. Intell. 23(2), 17–28 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Hilbert, D.: Über Flächen von constanter Gaussscher Krümmung. Trans. Am. Math. Soc. 2(1), 87–99 (1901)

    MATH  Google Scholar 

  52. Holmgren, E.: Sur les surfaces à courbure constante négative. CR Acad. Sci. Paris 134, 740–743 (1902)

    MATH  Google Scholar 

  53. Hong, J.X.: Realization in \({ R}^3\) of complete Riemannian manifolds with negative curvature. Comm. Anal. Geom. 1(3–4), 487–514 (1993)

    MathSciNet  MATH  Google Scholar 

  54. Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Hornung, P., Velčić, I.: Regularity of intrinsically convex \(W^{2,2}\) surfaces and a derivation of a homogenized bending theory of convex shells. J. Math. Pures Appl. 9(115), 1–23 (2018)

    MATH  Google Scholar 

  56. Huang, C., Wang, Z., Quinn, D., Suresh, S., Hsia, K.J.: Differential growth and shape formation in plant organs. Proc. Natl. Acad. Sci. 115(49), 12359–12364 (2018)

    Google Scholar 

  57. Huhnen-Venedey, E., Rörig, T.: Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geometriae Dedicata 168(1), 265–289 (2014)

    MathSciNet  MATH  Google Scholar 

  58. Ishikawa, G.-O., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17(3), 269–293 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Ivey, T.A., Landsberg, J.M.: Cartan for Beginners, volume 61 of Graduate Studies in Mathematics. American Mathematical Society Providence (2003)

  60. John, F.: On quasi-isometric mappings. I. Comm. Pure Appl. Math. 21, 77–110 (1968)

    MathSciNet  MATH  Google Scholar 

  61. John, F.: On quasi-isometric mappings. II. Comm. Pure Appl. Math. 22, 265–278 (1969)

    MathSciNet  MATH  Google Scholar 

  62. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, volume 157 of Applied Mathematical Sciences. Springer, New York (2004)

  63. Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C.: Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012a)

    MathSciNet  MATH  Google Scholar 

  64. Kim, J., Hanna, J.A., Hayward, R.C., Santangelo, C.D.: Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter 8(8), 2375–2381 (2012b)

    Google Scholar 

  65. Kirchheim, B.: Rigidity and Geometry of Microstructures. University of Leipzig, Habilitation (2001)

    Google Scholar 

  66. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)

    MathSciNet  MATH  Google Scholar 

  67. Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys. Rev. Lett. 106(11), 118303 (2011)

    Google Scholar 

  68. Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 Indag. Math. 17, 545–556, 683–689 (1955)

  69. Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266(5), 2989–3039 (2014)

    MathSciNet  MATH  Google Scholar 

  70. Lavrentieff, M.: Sur quelques problemes du calcul des variations. Annali di Matematica Pura ed Applicata 4(1), 7–28 (1926)

    MathSciNet  MATH  Google Scholar 

  71. Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \( W^{2, 2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(04), 1158–1173 (2011)

    MathSciNet  MATH  Google Scholar 

  72. Lewicka, M., Mahadevan, L., Pakzad, M.R.: Models for elastic shells with incompatible strains. Proc. R. Soc. Lond. Ser. A 470(2165), 20130604 (2014)

    Google Scholar 

  73. Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Natl. Acad. Sci. 106(52), 22049–22054 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Liang, H., Mahadevan, L.: Growth, geometry, and mechanics of a blooming lily. Proc. Natl. Acad. Sci. 108(14), 5516–5521 (2011)

    Google Scholar 

  75. Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482 (1995)

    Google Scholar 

  76. Louis-Rosenberg, J.: Floraform. http://n-e-r-v-o-u-s.com/blog/?p=6721 (2014). Accessed 21 June 2020

  77. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)

    Google Scholar 

  78. Marder, M.: The shape of the edge of a leaf. Found. Phys. 33(12), 1743–1768 (2003)

    Google Scholar 

  79. Marder, M., Sharon, E., Smith, S., Roman, B.: Theory of edges of leaves. Europhys. Lett. 62(4), 498 (2003)

    Google Scholar 

  80. Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282(3), 423–443 (1988)

    MathSciNet  MATH  Google Scholar 

  81. Meyer, G.: 2013 Bridges Conference: Mathematical Art Galleries. http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/gabriele_meyer (2013). Accessed 21 June 2020

  82. Milnor, T.K.: Efimov’s theorem about complete immersed surfaces of negative curvature. Adv. Math. 8(3), 474–543 (1972)

    MathSciNet  MATH  Google Scholar 

  83. Müller, S.: Mathematical problems in thin elastic sheets: Scaling limits, packing, crumpling and singularities. In: Ball, J., Marcellini, P. (eds.) Vector-Valued Partial Differential Equations and Applications: Cetraro. Italy 2013, pp. 125–193. Springer, Cham (2017)

  84. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. Second Ser. 60(3), 383–396 (1954)

    MATH  Google Scholar 

  85. Nechaev, S., Polovnikov, K.: Buckling and Wrinkling from Geometric and Energetic Viewpoints (2015)

  86. Nechaev, S., Polovnikov, K.: From geometric optics to plants: the eikonal equation for buckling. Soft Matter 13, 1420–1429 (2017)

    Google Scholar 

  87. Nechaev, S., Voituriez, R.: On the plant leaf’s boundary, jupe à godets’ and conformal embeddings. J. Phys. A Math. Gen. 34(49), 11069 (2001)

    MathSciNet  MATH  Google Scholar 

  88. Olbermann, H.: The one-dimensional model for d-cones revisited. Adv. Calc. Var. 9(3), 201–215 (2016)

    MathSciNet  MATH  Google Scholar 

  89. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  90. Rogers, C., Schief, W.K.: Bäcklund and Darboux transformations: geometry and modern applications in soliton theory, vol. 30. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  91. Rozendorn, È.R.: On complete surfaces of negative curvature \(K\le -1\) in the Euclidean spaces \(E_{3}\) and \(E_{4}\). Mat. Sb. N.S. 58(100), 453–478 (1962a)

    MathSciNet  Google Scholar 

  92. Rozendorn, È.R.: Properties of asymptotic lines on surfaces with slowly varying negative curvature. Dokl. Akad. Nauk SSSR 145, 538–540 (1962b)

    MathSciNet  Google Scholar 

  93. Rozendorn, È.R.: Weakly irregular surfaces of negative curvature. Uspehi Mat. Nauk 21(5 (131)), 59–116 (1966)

    MathSciNet  MATH  Google Scholar 

  94. Rozendorn, E.R.: Surfaces of negative curvature. In: Burago, Y.D., Zalgaller, V.A. (eds.) Geometry III, volume 48 of Encyclopaedia of Mathematical Sciences, pp. 87–178. Springer, Berlin (1992)

    Google Scholar 

  95. Sauer, R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Mathematische Zeitschrift 52(1), 611–622 (1950)

    MathSciNet  MATH  Google Scholar 

  96. Schmidt, B.: Minimal energy configurations of strained multi-layers. Calc. Var. Partial Differ. Equ. 30(4), 477–497 (2007a)

    MathSciNet  MATH  Google Scholar 

  97. Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. (9) 88(1), 107–122 (2007b)

    MathSciNet  MATH  Google Scholar 

  98. Sharon, E., Sahaf, M.: The mechanics of leaf growth on large scales. In: Geitmann, A., Gril, J. (eds.) Plant Biomechanics: From Structure to Function at Multiple Scales, pp. 109–126. Springer, Berlin (2018)

    Google Scholar 

  99. Sharon, E., Roman, B., Marder, M., Shin, G.-S., Swinney, H.L.: Buckling cascades in free sheets. Nature 419(6907), 579 (2002)

    Google Scholar 

  100. Sharon, E., Marder, M., Swinney, H.L.: Leaves, flowers and garbage bags: making waves. Am. Sci. 92(3), 254 (2004)

    Google Scholar 

  101. Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(4), 046211 (2007)

    Google Scholar 

  102. Stoker, J.J.: Differential Geometry. Wiley Classics Library. Wiley, New York (1989). Reprint of the 1969 original, A Wiley-Interscience Publication

    Google Scholar 

  103. Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    Google Scholar 

  104. Tobasco, I.: Curvature-driven wrinkling of thin elastic shells. arXiv preprint arXiv:1906.02153 (2019)

  105. Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301 (2003)

    MathSciNet  MATH  Google Scholar 

  106. Vetter, R., Stoop, N., Jenni, T., Wittel, F.K., Herrmann, H.J.: Subdivision shell elements with anisotropic growth. Int. J. Numer. Methods Eng. 95(9), 791–810 (2013)

    MathSciNet  MATH  Google Scholar 

  107. Weinstein, T.: An Introduction to Lorentz Surfaces, volume 22 of De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1996)

    Google Scholar 

  108. Wertheim, M., Wertheim, C.: Crochet Coral Reef. Institute for Figuring, Los Angeles, (2015). With contributions by Leslie Dick, Marion Endt-Jones and Anna Mayer and a foreword by Donna Haraway

  109. Wissler, Ch.: Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flächen konstanter negativer Krümmung. Comment. Math. Helv. 47, 348–372 (1972)

    MathSciNet  MATH  Google Scholar 

  110. Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa. 160, 39–77 (1951)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Amit Acharya, Andrew Sageman-Furnas, David Glickenstein, Eran Sharon, John Gemmer and Kenneth Yamamoto for many stimulating discussions. SV gratefully acknowledges the hospitality of the Center for Nonlinear Analysis at Carnegie Mellon University, the Oxford Center for Industrial and Applied Math at Oxford University and the Hausdorff Institute at the University of Bonn where portions of this work were carried out. TS was partially supported by a Michael Tabor fellowship from the Graduate Interdisciplinary Program in Applied Mathematics at the University of Arizona. SV was partially supported by the Simons Foundation through Awards 524875 and 560103 and partially supported by the NSF Award DMR-1923922.

Author information

Affiliations

Authors

Contributions

This article grew out of the Ph.D thesis work of TS, supervised by SV. TS wrote the initial draft. SV revised the draft and incorporated additional material/proofs. Both authors contributed to performing the research reported here. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Shankar C. Venkataramani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Eliot Fried.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 1961 KB)

Appendix: Asymptotics of Painlevé III

Appendix: Asymptotics of Painlevé III

We can get more accurate estimates than implied by the bounds in (5.6). For \(\varphi \ll 1,\) the Painlevé III equation (3.18) and the associated boundary conditions reduce to

$$\begin{aligned} \varphi ''(z) + \frac{\varphi '(z)}{z} - \varphi (z) = 0, \quad \varphi (0) = \varphi _0, \quad \varphi '(0) = 0. \end{aligned}$$

The solution is given by \(\varphi (z) = \varphi _0 I_0(z)\), where \(I_0\) is the modified Bessel function of the first kind (Abramowitz and Stegun 1992, §9.6). From the small and large z asymptotics of \(I_0\) (Abramowitz and Stegun 1992, §9.7), we get

$$\begin{aligned} \varphi _{\text {inner}}(z)&= \varphi _0\left( 1 + \frac{z^2}{4} + O\left( z^4 \right) \right) , \text { for } z\ll 1, \\ \varphi _{\text {outer}}(z)&= \varphi _0 \frac{e^{z}}{\sqrt{2\pi z}}\left( 1 + \frac{1}{8z} + O\left( \frac{1}{z^2}\right) \right) , \text {for} z \gg 1. \end{aligned}$$

For the regime \(z \gg 1, \varphi \approx \pi \), we have the weakly damped pendulum equation:

$$\begin{aligned} \varphi ''(z) - \sin \varphi (z) = - \frac{\varphi '(z)}{z} \approx 0, \end{aligned}$$
(A.1)

with asymptotic solutions of the form

$$\begin{aligned} \varphi _{\text {pend}}(z) \approx \pi - A\sin (z^* - z), \end{aligned}$$
(A.2)

for a slowly varying amplitude A that changes over many cycles of the pendulum. We are only interested in the first crossing \(\phi (z^*) = \pi \), so we can assume that A is constant and determine A by matching the large z asymptotics of the Bessel solution with the pendulum solution. From the Bessel solution, we derive initial data for the pendulum equation, fixing the energy level for this conservative system:

$$\begin{aligned} (\varphi _{\text {pend}}(0), \varphi _{\text {pend}}'(0)) \approx \left( \frac{\varphi _0 e^{z}}{\sqrt{2\pi z}}, \frac{\varphi _0 e^{z}}{\sqrt{2\pi z}}\right) = (\delta , \delta ), \end{aligned}$$
(A.3)

where we match at such a point z that \(z \gg 1, \delta \ll 1\). The energy of the pendulum solution is given by

$$\begin{aligned} E = \frac{\varphi '^2}{2} + \cos \varphi \approx 1 + \frac{\delta ^4}{24}, \end{aligned}$$
(A.4)

as \(\cos \varphi \) is the potential and \(\delta \ll 1\). Substituting the data into the energy, we find

$$\begin{aligned} 1 + \frac{\delta ^4}{24}&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 + \cos \varphi , \\&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 - 1 + \frac{(\pi - \varphi )^2}{2}, \\&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 - 1 +\frac{1}{2}A^2\sin ^2(z^*-z), \\&\approx -1 \frac{1}{2}\left[ A'^2\sin ^2(z^*-z) - 2A'A\sin (z^*-z)\cos (z^*-z) + A^2\right] , \end{aligned}$$

which in the case of slowing varying A simplifies to

$$\begin{aligned} A&\approx 2\sqrt{1 + \frac{\delta ^4}{48}}. \end{aligned}$$
Fig. 20
figure20

Asymptotics using the Pendulum and Bessel approximations in the \(\varphi _0\rightarrow 0\) limit compared to the numerical solution of the Painlevé equation for \(\varphi _0 = \frac{\pi }{100}\). Our interest is in approximating the exact solution well on an interval \([0,z^*]\) where \(z = z^* \approx 9\) is the first instance where \(\varphi (z) = \pi \), depicted by the dashed horizontal line in the figure

We are now equipped with a complete asymptotic description of the solutions to Painlevé III for an initial angle \(\varphi _0\). The description is divided into three regimes: \(z \ll 1\) and \(\varphi _0 \lesssim \varphi \ll \pi \), \(z \gg 1\) and \(\varphi _0 \ll \varphi \lesssim \pi \), and finally \(z\gg 1\) and \(\varphi \approx \pi \):

$$\begin{aligned} \varphi (z) \approx \left\{ \begin{matrix} \varphi _0\left( 1 + \frac{z^2}{4}\right) ,\ z\ll 1\text {~and~} \varphi _0 \lesssim \varphi \ll \pi \\ \varphi _0 \frac{e^{z}}{\sqrt{2\pi z}}\left( 1 + \frac{1}{8z}\right) ,\ z\gg 1\text {~and~} \varphi _0 \ll \varphi \lesssim \pi \\ \pi - 2\sqrt{1 + \frac{e^{4 z}}{192\pi ^2 z^2}}\sin (z^* - z),\ \varphi \approx \pi , z \lesssim z^* \approx -\log (\varphi _0). \end{matrix}\right. \end{aligned}$$
(A.5)

A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we consider \(\varphi _0 = \frac{\pi }{100}\)). Using the expressions in (A.5) instead of the bounds (5.6) gives the optimal constant \(C(\phi ^*) =1\) in Lemma 5.1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shearman, T.L., Venkataramani, S.C. Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature. J Nonlinear Sci 31, 13 (2021). https://doi.org/10.1007/s00332-020-09657-2

Download citation

Keywords

  • Pseudospherical immersions
  • Discrete differential geometry
  • Branch points
  • Self-similar buckling patterns
  • Extreme mechanics

Mathematics Subject Classification

  • Primary: 53C42
  • Secondary: 53A70
  • 53C80
  • 35Q74
  • 74K99