Skip to main content
Log in

The Regularized Visible Fold Revisited

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

A Publisher Correction to this article was published on 13 October 2023

A Correction to this article was published on 16 May 2023

This article has been updated

Abstract

The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter \(\epsilon \rightarrow 0\). Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit \(\epsilon \rightarrow 0\), grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  • Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  Google Scholar 

  • Bonet, C., M-Seara, T.: Chaos in the hysteretic grazing-sliding codimension-one saddle-node bifurcation of piecewise dynamical systems. In: A: Congreso de Ecuaciones Diferenciales y Aplicaciones y Congreso de Matematica Aplicada. “CEDYA 2017, pp. 73–77 (2017)

  • Bonet-Revés, C., M-Seara, T.: Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete Contin. Dyn. Syst. Ser. A 36(7), 3545–3601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bossolini, E., Brøns, M., Kristiansen, K.U.: Canards in stiction: on solutions of a friction oscillator by regularization. SIAM J. Appl. Dyn. Syst. 16(4), 2233–2258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bossolini, E., Brøns, M., Kristiansen, K.U.: Singular limit analysis of a model for earthquake faulting. Nonlinearity 30(7), 2805–2834 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Buzzi, C.A., da Silva, P.R., Teixeira, M.A.: A singular approach to discontinuous vector fields on the plane. J. Differ. Equ. 231, 633–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Desroches, M., Jeffrey, M.R.: Canards and curvature: nonsmooth approximation by pinching. Nonlinearity 24(5), 1655–1682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 121, 1–96 (1996)

    MathSciNet  MATH  Google Scholar 

  • Ebers, J.J., Moll, J.L.: Large-signal behavior of junction transistors. Inst. Radio Eng. Conv. Rec. 42(12), 1761–1772 (1954)

    Google Scholar 

  • Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Fenichel, N.: Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23, 1109–1137 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and its Applications. Kluwer Academic Publishers, Cambridge (1988)

    Book  Google Scholar 

  • Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. 78(11), 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

  • Guglielmi, N., Hairer, E.: Classification of hidden dynamics in discontinuous dynamical systems. SIAM J. Appl. Dyn. Syst. 14(3), 1454–1477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics—experiments and a heuristic model. Phys. Rev. E 49(6), 4973–4988 (1994)

    Article  Google Scholar 

  • Hogan, S.J., Homer, M.E., Jeffrey, M.R., Szalai, R.: Piecewise smooth dynamical systems theory: the case of the missing boundary equilibrium bifurcations. J. Nonlinear Sci. 26(5), 1161–1173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Jelbart, S., Kristiansen, K.U., Szmolyan, P., Wechselberger, M.: Singularly perturbed oscillators with exponential nonlinearities (2019). arXiv:1912.11769

  • Jelbart, S., Kristiansen, K.U., Wechselberger, M.: Singularly perturbed boundary focus bifurcations (2020)

  • Jones, C.K.R.T.: Geometric Singular Perturbation Theory. Lecture Notes in Mathematics, Dynamical Systems (Montecatini Terme). Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  • Kaklamanos, P., Kristiansen, K.U.: Regularization and geometry of piecewise smooth systems with intersecting discontinuity sets. SIAM J. Appl. Dyn. Syst. 18(3), 1225–1264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Kosiuk, I., Szmolyan, P.: Geometric singular perturbation analysis of an autocatalator model. Discrete Cont. Dyn. Syst. Ser. S 2(4), 783–806 (2009)

    MathSciNet  MATH  Google Scholar 

  • Kosiuk, I., Szmolyan, P.: Scaling in singular perturbation problems: blowing up a relaxation oscillator. SIAM J. Appl. Dyn. Syst. 10(4), 1307–1343 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kosiuk, I., Szmolyan, P.: Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle. J. Math. Biol. 72(5), 1337–1368 (2016). https://doi.org/10.1007/s00285-015-0905-0

    Article  MathSciNet  MATH  Google Scholar 

  • Kristiansen, K.U., Szmolyan, P.: Relaxation oscillations in substrate-depletion oscillators close to the nonsmooth limit. arXiv:1909.11746 e-prints (2019). https://arxiv.org/pdf/1909.11746.pdf

  • Kristiansen, K.U.: A new type of relaxation oscillation in a model with rate-and-state friction: paper. Nonlinearity 33(6), 2960–3037 (2020). https://doi.org/10.1088/1361-6544/ab73cf

    Article  MathSciNet  MATH  Google Scholar 

  • Kristiansen, K.U.: Blowup for flat slow manifolds. Nonlinearity 30(5), 2138–2184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kristiansen, K.U.: Geometric singular perturbation analysis of a dynamical target mediated drug disposition model. J. Math. Biol. 79(1), 187–222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  • Kuznetsov, YuA, Rinaldi, S., Gragnani, A.: One parameter bifurcations in planar Filippov systems. Int. J. Bif. Chaos 13, 2157–2188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Laidler, K.J.: Chemical Kinetics. Harper and Row, New York (1987)

    Google Scholar 

  • Llibre, J., da Silva, P.R., Teixeira, M.A.: Regularization of discontinuous vector fields on \({\mathbb{R}}^3\) via singular perturbation. J. Dyn. Differ. Equ. 19, 309–331 (2007)

    Article  MATH  Google Scholar 

  • Llibre, J., Da Silva, P.R., Teixeira, M.A.: Study of singularities in nonsmooth dynamical systems via singular perturbation. SIAM J. Appl. Dyn. Syst. 8(1), 508–526 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcation of nonsmooth systems: a survey. Physica D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  • Munkres, J.R.: Topology. Pearson, London (2000)

    MATH  Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST handbook of mathematical functions. J. Geom. Sym. Phys. 22, 99–104 (2011)

    MATH  Google Scholar 

  • Panazzolo, D., da Silva, P.R.: Regularization of discontinuous foliations: blowing up and sliding conditions via fenichel theory. J. Differ. Equ. 263(12), 8362–8390 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Papangelo, A., Ciavarella, M., Hoffmann, N.: Subcritical bifurcation in a self-excited single-degree-of-freedom system with velocity weakeningstrengthening friction law: analytical results and comparison with experiments. Nonlinear Dyn. 90(3), 2037–2046 (2017)

    Article  Google Scholar 

  • Perko, L.: Differential Equations and Dynamical Systems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  • Schecter, S.: Exchange lemmas 2: general exchange lemma. J. Differ. Equ. 245(2), 411–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector fields. In: Proceedings of the International Conference on Differential Equations, Lisboa, pp. 207–223 (1996)

  • Szmolyan, P.: Progress and challenges in singular perturbations. In: Talk at EquaDiff Conference in Bratislava, Slovakia (2017)

  • Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  • Uldall Kristiansen, K., Hogan, S.J.: On the use of blowup to study regularizations of singularities of piecewise smooth dynamical systems in R3. SIAM J. Appl. Dyn. Syst. 14(1), 382–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Uldall Kristiansen, K., Hogan, S.J.: Regularizations of two-fold bifurcations in planar piecewise smooth systems using blowup. SIAM J. Appl. Dyn. Syst. 14(4), 1731–1786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Uldall Kristiansen, K., Hogan, S.J.: Resolution of the piecewise smooth visible-invisible two-fold singularity in R3 using regularization and blowup. J. Nonlinear Sci. 29(2), 723–787 (2018)

    Article  MATH  Google Scholar 

  • Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Won, H.I., Chung, J.: Stickslip vibration of an oscillator with damping. Nonlinear Dyn. 86(1), 257–267 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Samuel Jelbart for bringing the friction oscillator and the model (2.5) to my attention, for sharing references on the subject and for providing valuable feedback on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Uldall Kristiansen.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Theorem 1.3(a)

Appendix A: Proof of Theorem 1.3(a)

The analysis in the chart \({\bar{y}}=-1\) (see (1.16)) plays little role and is similar to how we deal with \({\bar{y}}=1\). The details are therefore omitted. In the following we therefore consider \({\bar{\epsilon }}=1\) and \({\bar{y}}=1\) only.

1.1 A.1: Chart \({\bar{\epsilon }}=1\)

In this chart, we obtain the following equations

$$\begin{aligned} {\dot{x}}&=\epsilon \phi (y_2,\epsilon )(1+f(x,\epsilon y_2)), \nonumber \\ {\dot{y}}_2&= \phi (y_2,\epsilon )(2x+\epsilon y_2 g(x,\epsilon y_2)) + 1-\phi (y_2,\epsilon ), \end{aligned}$$
(A.1)

and \({\dot{r}}_2=0\), using (1.11) and (1.1) in (1.12). This is a slow-fast system with x slow and \(y_2\) fast. Setting \(\epsilon =0\) gives the layer problem where x is a parameter and

$$\begin{aligned} {\dot{y}}_2&=\phi (y_2,0)2x+1-\phi (y_2,0), \end{aligned}$$

and hence a normally hyperbolic and attracting, but noncompact, critical manifold:

$$\begin{aligned} S =\{(x,y_2)\in U_\xi \vert \phi (y_2,0) =\frac{1}{1-2x},x<0\}. \end{aligned}$$
(A.2)

Fixing \(J=[-\xi ,-\nu ]\), we can apply Fenichel’s theory to \(S\cap \{x\in J\}\) and conclude the existence of the invariant manifold \(S_\epsilon \) in Theorem 1.3(a). The fact that \(Z\vert _{S_\epsilon }\) is a regular perturbation of the Filippov vector-field is standard and follows easily from the fact that the reduced problem on S:

$$\begin{aligned} x'&=\phi (y_2,0)(1+f(x,0)) = \frac{1}{1-2x}(1+f(x,0)), \end{aligned}$$

coincides with Filippov.

1.2 A.2: Chart \({\bar{y}}=1\)

Upon inserting (1.16) into (1.12), using (1.1) and (1.11), we obtain the following equations

$$\begin{aligned} {\dot{r}}_1&=-r_1 F(r_1,x,\epsilon _1),\\ {\dot{x}}&= r_1 (1-\epsilon _1^k \phi _+(r_1,\epsilon _1))(1+f(x,r_1),\\ {\dot{\epsilon }}_1&=\epsilon _1 F(r_1,x,\epsilon _1), \end{aligned}$$

after dividing the righ-hand side by \(\epsilon _1\) (as promised in our description of the blowup approach, see Sect. 1.4). In these equations, we have introduced the following function where

$$\begin{aligned} F(r_1,x,\epsilon _1) =- (1-\epsilon _1^k\phi _+(r_1,\epsilon _1))(2x+r_1 g(x,r_1))-\epsilon _1^k \phi _+(r_1,\epsilon _1). \end{aligned}$$

Remark A.1

Notice that within the invariant subset defined by \(\epsilon _1=0\), we have \(F_1(r_1,x,0)=-(2x+r_1g(x,r_1))\) and hence

$$\begin{aligned} {\dot{x}}&=y(1+f(x,y)),\\ {\dot{y}}&= -y (2x+yg(x,y)), \end{aligned}$$

using that \(r_1=y\). But this is just \(yZ_+\) (see (1.11)).

Now, focus first on \(x\in J\). Then for \(r_1\ge 0\) and \(\epsilon _1\ge 0\) but sufficiently small we have \(F>0\), and hence, the system is topological equivalent with the following version

$$\begin{aligned} {\dot{r}}_1&=-r_1, \nonumber \\ {\dot{x}}&= r_1 (1-\epsilon _1^k \phi _+(r_1,\epsilon _1))\frac{(1+f(x,r_1)}{F(r_1,x,\epsilon _1)},\nonumber \\ {\dot{\epsilon }}_1&=\epsilon _1, \end{aligned}$$
(A.3)

The set \(r_1=\epsilon _1=0\) is therefore a line of equilibria having stable and unstable manifolds contained within \(\epsilon _1=0\) and \(r_1=0\), respectively. We can straighten out the individual unstable manifolds of points on \(x\in J,\,r_1=\epsilon _1=0\) by a transformation of the form \({\tilde{x}}\mapsto x=m({\tilde{x}},r_1)\), \(r_1\in [0,\xi ]\) with m smooth, with \(m'_{{\tilde{x}}}>0\). Applying this transformation to (A.3) gives

$$\begin{aligned} {\dot{r}}_1&=-r_1,\\ {\dot{x}}&= \epsilon G(r_1,x,\epsilon _1),\\ {\dot{\epsilon }}_1&=\epsilon _1, \end{aligned}$$

dropping the tilde on x. Recall here that \(\epsilon =r_1\epsilon _1\). Therefore if we consider an initial condition with \(r_1(0)=\delta >0\) small, then

$$\begin{aligned} r_1(t)&=e^{-t}\delta , \nonumber \\ x(t)&=x(0)+{\mathcal {O}}(\epsilon t),\nonumber \\ \epsilon _1(t)&= e^{t}\epsilon _1(0). \end{aligned}$$
(A.4)

Now, we wish to extend the stable foliation of \(S_\epsilon \) by the backward flow. For this, let \(x\in J\), after possibly decreasing \(\nu >0\) and \(\xi \), and consider the leaf \({\mathcal {F}}_{x,\epsilon }\) of the Fenichel foliation of \(S_\epsilon \). We therefore flow this set forward \(t={\mathcal {O}}(\log \epsilon ^{-1})\), which is the time it takes for \(r_1\) to go from \({\mathcal {O}}(1)\) to \(\mathcal O(\epsilon )\). This gives a new x, \(x'=x\cdot t\), say, and a new leaf \({\mathcal {F}}_{x',\epsilon }\). Notice \(\phi _t \left( \mathcal F_{x,\epsilon }\right) \subset {\mathcal {F}}_{x',\epsilon }\), and hence, we extend \({\mathcal {F}}_{x,\epsilon }\) by flowing \(\mathcal F_{x',\epsilon }\) backwards by time t. (In general, \(\mathcal F_{x',\epsilon }\) will not be fully covered by the chart \({\bar{y}}=1\) and therefore we will have to work in separate charts.) We do this by using (A.4), which produces the extended leafs as images of Lipschitz mappings.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristiansen, K.U. The Regularized Visible Fold Revisited. J Nonlinear Sci 30, 2463–2511 (2020). https://doi.org/10.1007/s00332-020-09627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09627-8

Keywords

Mathematics Subject Classification

Navigation