Skip to main content
Log in

A Probabilistic Approach to Extreme Statistics of Brownian Escape Times in Dimensions 1, 2, and 3

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

First passage time (FPT) theory is often used to estimate timescales in cellular and molecular biology. While the overwhelming majority of studies have focused on the time it takes a given single Brownian searcher to reach a target, cellular processes are instead often triggered by the arrival of the first molecule out of many molecules. In these scenarios, the more relevant timescale is the FPT of the first Brownian searcher to reach a target from a large group of independent and identical Brownian searchers. Though the searchers are identically distributed, one searcher will reach the target before the others and will thus have the fastest FPT. This fastest FPT depends on extremely rare events and its mean can be orders of magnitude faster than the mean FPT of a given single searcher. In this paper, we use rigorous probabilistic methods to study this fastest FPT. We determine the asymptotic behavior of all the moments of this fastest FPT in the limit of many searchers in a general class of two- and three-dimensional domains. We establish these results by proving that the fastest searcher takes an almost direct path to the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barlow, P.W.: Why so many sperm cells? Not only a possible means of mitigating the hazards inherent to human reproduction but also an indicator of an exaptation. Commun. Integr. Biol. 9(4), e1204499 (2016)

    Google Scholar 

  • Basnayake, K., Holcman, D.: Fastest among equals: a novel paradigm in biology. Phys. Life Rev. 28, 96–99 (2019)

    Google Scholar 

  • Basnayake, K., Hubl, A., Schuss, Z., Holcman, D.: Extreme narrow escape: shortest paths for the first particles among \(N\) to reach a target window. Phys. Lett. A 382(48), 3449–3454 (2018)

    MathSciNet  MATH  Google Scholar 

  • Basnayake, K., Schuss, Z., Holcman, D.: Asymptotic formulas for extreme statistics of escape times in 1, 2 and 3-dimensions. J. Nonlinear Sci. 29(2), 461–499 (2019a)

    MathSciNet  MATH  Google Scholar 

  • Basnayake, K., Mazaud, D., Bemelmans, A., Rouach, N., Korkotian, E., Holcman, D.: Fast calcium transients in dendritic spines driven by extreme statistics. PLoS Biol. 17(6), e2006202 (2019b)

    Google Scholar 

  • Bénichou, O., Voituriez, R.: Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 100(16), 168105 (2008)

    Google Scholar 

  • Bernoff, A.J., Lindsay, A.E.: Numerical approximation of diffusive capture rates by planar and spherical surfaces with absorbing pores. SIAM J. Appl. Math. 78(1), 266–290 (2018)

    MathSciNet  MATH  Google Scholar 

  • Bernoff, A.J., Lindsay, A.E., Schmidt, D.D.: Boundary homogenization and capture time distributions of semipermeable membranes with periodic patterns of reactive sites. Multiscale Model. Simul. 16(3), 1411–1447 (2018)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Stochastically gated diffusion-limited reactions for a small target in a bounded domain. Phys. Rev. E 92(6), 062117 (2015a). https://doi.org/10.1103/PhysRevE.92.062117

    Article  MathSciNet  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Escape from subcellular domains with randomly switching boundaries. Multiscale Model. Simul. 13(4), 1420–1445 (2015b)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Escape from a potential well with a randomly switching boundary. J. Phys. A 48(22), 225001 (2015c)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85(1), 135–196 (2013)

    Google Scholar 

  • Cheviakov, A.F., Ward, M.J., Straube, R.: An asymptotic analysis of the mean first passage time for narrow escape problems: part II: the sphere. Multiscale Model. Simul. 8(3), 836–870 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chou, T., D’Orsogna, M.R.: First passage problems in biology. In: Metzler, R., Oshanin, G., Redner, S. (eds.) First-Passage Phenomena and Their Applications, pp. 306–345. World Scientific, Singapore (2014)

    Google Scholar 

  • Coles, S.: An Introduction to Statistical Modeling of Extreme Values, vol. 208. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Coombs, D.: First among equals: comment on redundancy principle and the role of extreme statistics in molecular and cellular biology by Z. Schuss, K. Basnayake and D. Holcman. Phys. Life Rev. 28, 92–93 (2019)

    Google Scholar 

  • Delgado, M.I., Ward, M.J., Coombs, D.: Conditional mean first passage times to small traps in a 3-d domain with a sticky boundary: applications to t cell searching behavior in lymph nodes. Multiscale Model. Simul. 13(4), 1224–1258 (2015)

    MathSciNet  MATH  Google Scholar 

  • Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  • Edwards, L.J., Evavold, B.D.: T cell recognition of weak ligands: roles of signaling, receptor number, and affinity. Immunol. Res. 50(1), 39–48 (2011)

    Google Scholar 

  • Eisenbach, M., Giojalas, L.C.: Sperm guidance in mammals—an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7(4), 276 (2006)

    Google Scholar 

  • Godec, A., Metzler, R.: First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time. Sci. Rep. 6, 20349 (2016a)

    Google Scholar 

  • Godec, A., Metzler, R.: Universal proximity effect in target search kinetics in the few-encounter limit. Phys. Rev. X 6(4), 041037 (2016b)

    Google Scholar 

  • Grebenkov, D.S.: Searching for partially reactive sites: analytical results for spherical targets. J. Chem. Phys. 132(3), 01B608 (2010)

    Google Scholar 

  • Grebenkov, D.S., Oshanin, G.: Diffusive escape through a narrow opening: new insights into a classic problem. Phys. Chem. Chem. Phys. 19(4), 2723–2739 (2017)

    Google Scholar 

  • Grebenkov, D.S., Metzler, R., Oshanin, G.: Towards a full quantitative description of single-molecule reaction kinetics in biological cells. Phys. Chem. Chem. Phys. 20(24), 16393–16401 (2018a)

    Google Scholar 

  • Grebenkov, D.S., Metzler, R., Oshanin, G.: Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control. Commun. Chem. 1(1), 96 (2018b)

    Google Scholar 

  • Guerrier, C., Holcman, D.: The first 100 nm inside the pre-synaptic terminal where calcium diffusion triggers vesicular release. Front. Synaptic Neurosci. 10, 23 (2018). https://doi.org/10.3389/fnsyn.2018.00023

    Article  Google Scholar 

  • Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York City (1962)

    MATH  Google Scholar 

  • Handy, G., Lawley, S.D., Borisyuk, A.: Receptor recharge time drastically reduces the number of captured particles. PLOS Comput. Biol. 14(3), e1006015 (2018)

    Google Scholar 

  • Handy, G., Lawley, S.D., Borisyuk, A.: Role of trap recharge time on the statistics of captured particles. Phys. Rev. E 99(2), 022420 (2019)

    Google Scholar 

  • Hartich, D., Godec, A.: Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit. J. Phys. A 52(24), 244001 (2019)

    MathSciNet  Google Scholar 

  • Holcman, D., Schuss, Z.: Time scale of diffusion in molecular and cellular biology. J. Phys. A Math. Theor. 47(17), 173001 (2014a)

    MATH  Google Scholar 

  • Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56(2), 213–257 (2014b)

    MathSciNet  MATH  Google Scholar 

  • Kurella, V., Tzou, J.C., Coombs, D., Ward, M.J.: Asymptotic analysis of first passage time problems inspired by ecology. Bull. Math. Biol. 77(1), 83–125 (2015)

    MathSciNet  MATH  Google Scholar 

  • Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., Singer, R.H.: Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332(6028), 475–478 (2011)

    Google Scholar 

  • Lawley, S.D.: A probabilistic analysis of volume transmission in the brain. SIAM J. Appl. Math. 78(2), 942–962 (2018)

    MathSciNet  MATH  Google Scholar 

  • Lawley, S.D.: Distribution of extreme first passage times of diffusion. arXiv:1910.12170 (2019a)

  • Lawley, S.D.: Universal formula for extreme first passage statistics of diffusion. arXiv:1909.09883 (2019b)

  • Lawley, S.D.: Boundary homogenization for trapping patchy particles. Phys. Rev. E 100(3), 032601 (2019c)

    Google Scholar 

  • Lawley, S.D., Madrid, J.B.: First passage time distribution of multiple impatient particles with reversible binding. J. Chem. Phys. 150, 214113 (2019)

    Google Scholar 

  • Lawley, S.D., Miles, C.E.: Diffusive search for diffusing targets with fluctuating diffusivity and gating. J. Nonlinear Sci. (2019). https://doi.org/10.1007/s00332-019-09564-1

    Article  MathSciNet  MATH  Google Scholar 

  • Lindenberg, K., Seshadri, V., Shuler, K.E., Weiss, G.H.: Lattice random walks for sets of random walkers. First passage times. J. Stat. Phys. 23(1), 11–25 (1980)

    MathSciNet  Google Scholar 

  • Lindsay, A.E., Tzou, J.C., Kolokolnikov, T.: Optimization of first passage times by multiple cooperating mobile traps. Multiscale Model. Simul. 15(2), 920–947 (2017a)

    MathSciNet  Google Scholar 

  • Lindsay, A.E., Bernoff, A.J., Ward, M.J.: First passage statistics for the capture of a brownian particle by a structured spherical target with multiple surface traps. Multiscale Model. Simul. 15(1), 74–109 (2017b)

    MathSciNet  MATH  Google Scholar 

  • Martyushev, L.M.: Minimal time, Weibull distribution and maximum entropy production principle: comment on redundancy principle and the role of extreme statistics in molecular and cellular biology by Z. Schuss et al. Phys. Life Rev. 28, 83–84 (2019)

    Google Scholar 

  • Meerson, B., Redner, S.: Mortality, redundancy, and diversity in stochastic search. Phys. Rev. Lett. 114(19), 198101 (2015)

    Google Scholar 

  • Novak, S.Y.: Extreme Value Methods with Applications to Finance. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Pillay, S., Ward, M.J., Peirce, A., Kolokolnikov, T.: An asymptotic analysis of the mean first passage time for narrow escape problems: part I: two-dimensional domains. Multiscale Model. Simul. 8(3), 803–835 (2010)

    MathSciNet  MATH  Google Scholar 

  • Redner, S., Meerson, B.: Redundancy, extreme statistics and geometrical optics of Brownian motion: comment on redundancy principle and the role of extreme statistics in molecular and cellular biology by Z. Schuss et al. Phys. Life Rev. 28, 80–82 (2019)

    Google Scholar 

  • Reynaud, K., Schuss, Z., Rouach, N., Holcman, D.: Why so many sperm cells? Commun. Integr. Biol. 8(3), e1017156 (2015)

    Google Scholar 

  • Ro, S., Kim, Y.W.: Parallel random target searches in a confined space. Phys. Rev. E 96(1), 012143 (2017)

    Google Scholar 

  • Rusakov, D.A., Savtchenko, L.P.: Extreme statistics may govern avalanche-type biological reactions: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, K. Basnayake, D. Holcman. Phys. Life Rev. 28, 85–87 (2019)

    Google Scholar 

  • Schuss, Z., Basnayake, K., Holcman, D.: Redundancy principle and the role of extreme statistics in molecular and cellular biology. Phys. Life Rev. 28, 52–79 (2019). https://doi.org/10.1016/j.plrev.2019.01.001

    Article  MATH  Google Scholar 

  • Sokolov, I.M.: Extreme fluctuation dominance in biology: On the usefulness of wastefulness: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology by Z. Schuss, K. Basnayake and D. Holcman. Phys. Life Rev. 28, 88–91 (2019)

    Google Scholar 

  • Tamm, M.V.: Importance of extreme value statistics in biophysical contexts: comment on redundancy principle and the role of extreme statistics in molecular and cellular biology. Phys. Life Rev. 28, 94–95 (2019)

    Google Scholar 

  • van Beijeren, H.: The uphill turtle race; on short time nucleation probabilities. J. Stat. Phys. 110(3–6), 1397–1410 (2003)

    MATH  Google Scholar 

  • Wang, S.S., Alousi, A.A., Thompson, S.H.: The lifetime of inositol 1,4,5-trisphosphate in single cells. J. Gen. Physiol. 105(1), 149–171 (1995)

    Google Scholar 

  • Weiss, G.H., Shuler, K.E., Lindenberg, K.: Order statistics for first passage times in diffusion processes. J. Stat. Phys. 31(2), 255–278 (1983)

    MathSciNet  MATH  Google Scholar 

  • Yuste, S.B.: Escape times of \(j\) random walkers from a fractal labyrinth. Phys. Rev. Lett. 79(19), 3565 (1997)

    MathSciNet  MATH  Google Scholar 

  • Yuste, S.B., Acedo, L.: Diffusion of a set of random walkers in Euclidean media. First passage times. J. Phys. A Math. Gen. 33(3), 507–512 (2000)

    MATH  Google Scholar 

  • Yuste, S.B., Lindenberg, K.: Order statistics for first passage times in one-dimensional diffusion processes. J. Stat. Phys. 85(3–4), 501–512 (1996)

    MathSciNet  MATH  Google Scholar 

  • Yuste, S.B., Lindenberg, K.: Subdiffusive target problem: survival probability. Phys. Rev. E 76(5), 051114 (2007)

    MathSciNet  Google Scholar 

  • Yuste, S.B., Acedo, L., Lindenberg, K.: Order statistics for \(d\)-dimensional diffusion processes. Phys. Rev. E 64(5), 052102 (2001)

    Google Scholar 

Download references

Acknowledgements

SDL was supported by the National Science Foundation (Grant Nos. DMS-1814832 and DMS-1148230). JBM was supported by the National Science Foundation (Grant No. DMS-1814832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Lawley.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we collect the proofs of all the lemmas.

Proof of Lemma 2

First notice that \(R_{n}(t)\) is a 2d Bessel process. In particular, \(R_{n}(t)\) has the same law as \(\sqrt{2D}\sqrt{W_{1}^{2}(t)+W_{2}^{2}(t)}\), where \(W_{1}(t)\in \mathbb {R}\) and \(W_{2}(t)\in \mathbb {R}\) are independent standard Brownian motions. Next, define the 3d Bessel process,

$$\begin{aligned} R^{\text {3d}}(t) :=\sqrt{2D}\sqrt{W_{1}^{2}(t)+W_{2}^{2}(t)+W_{3}^{2}(t)}, \end{aligned}$$

where \(W_{3}(t)\in \mathbb {R}\) is a third independent standard Brownian motion. If \(\tau \) is the first time that \(R^{\text {3d}}(t)\) hits radius \(a>0\),

$$\begin{aligned} \tau :=\inf \{t>0:R^{\text {3d}}(t)=a\}, \end{aligned}$$

then it is immediate that \(\mathbb {P}(\tau _{1,side }\le t)\le \mathbb {P}(\tau \le t)\) for all \(t\ge 0\). Since \(\mathbb {P}(\tau \le t)\) has the explicit formula (see, for example, Bernoff and Lindsay 2018),

$$\begin{aligned} \mathbb {P}(\tau \le t) =\sqrt{\frac{4a^{2}}{\pi Dt}}\sum _{k=0}^{\infty }\mathrm{e}^{-a^{2}(n+\frac{1}{2})^{2}/(Dt)}, \end{aligned}$$

we may take \(C_{1}=4a(\pi D)^{-1/2}\) and \(C_{2}=a^{2}/(4D)\) to complete the proof. \(\square \)

Proof of Lemma 3

Recall that \(\tau _{1,z}\) is the first time \(Z_{1}(t)\) hits \(z=0\), assuming \(Z_{1}(0)=z_{0}>0\) and \(Z_{1}(t)\) reflects from \(z=h\ge z_{0}\). It is immediate that

$$\begin{aligned} \mathbb {P}(\tau _{1,z}>t) \le \mathbb {P}(\tau >t), \end{aligned}$$

where \(\tau \) is the first time a standard Brownian motion, \(W(t)\in \mathbb {R}\), hits \(z_{0}/\sqrt{2D}\),

$$\begin{aligned} \tau :=\inf \{t>0:W(t)=z_{0}/\sqrt{2D}\}. \end{aligned}$$

The reflection principle (Durrett 2019) then gives

$$\begin{aligned} \mathbb {P}(\tau >t) =1-\mathbb {P}(\tau \le t) =1-2\mathbb {P}(W(t)\ge z_{0}/\sqrt{2D}) =\text {erf}(z_{0}/\sqrt{4Dt}), \end{aligned}$$

where \(\text {erf}(x)\) denotes the error function, which has the large x behavior,

$$\begin{aligned} \text {erf}(x):=\frac{1}{\sqrt{\pi }}\int _{-x}^{x}\mathrm{e}^{-s^{2}}\,\text {d}s =1-\frac{\mathrm{e}^{-x^{2}}}{x\sqrt{\pi }}\Big (1-\frac{2}{x^{2}}+\mathcal {O}(x^{-4})\Big )\quad \text {as }x\rightarrow \infty . \end{aligned}$$
(5.1)

Hence, we may take \(C_{3}=\frac{\sqrt{D}}{\sqrt{\pi }z_{0}}\) and \(C_{4}=z_{0}^{2}/(4D)\) to complete the proof. \(\square \)

Proof of Lemma 6

Define the event

$$\begin{aligned} B&:=\{\tau _{1}<\min \{\tau _{1,side },\tau _{1,top }\}\}, \end{aligned}$$

and let \(B^{c}\) denote its complement. It is immediate that

$$\begin{aligned} \mathbb {P}(\tau _{1}>t|B) \le \mathbb {P}(\tau _{1}^{+}>t|B), \end{aligned}$$

since \(\tau _{1}\le \tau _{1}^{+}\) if \(\tau _{1}<\min \{\tau _{1,side },\tau _{1,top }\}\). Next, by the definition of \(\tau _{1}^{+}\), we have that

$$\begin{aligned} \mathbb {P}(\tau _{1}^{+}>t|B^{c})=1\quad \text {for all }t<1. \end{aligned}$$

Therefore

$$\begin{aligned} \mathbb {P}(\tau _{1}>t) \le \mathbb {P}(\tau _{1}^{+}>t|B)\mathbb {P}(B) +\mathbb {P}(B^{c})=\mathbb {P}(\tau _{1}^{+}>t)\quad \text {for all }t<1. \end{aligned}$$

Now, it is an identity that

$$\begin{aligned} \mathbb {E}[T_{3d }^{m}] = \int _{0}^{1}(\mathbb {P}(\tau _{1}>t^{1/m}))^{N}\,\text {d}t +\int _{1}^{\infty }(\mathbb {P}(\tau _{1}>t^{1/m}))^{N}\,\text {d}t. \end{aligned}$$

Therefore, we have that

$$\begin{aligned} \mathbb {E}[T_{3d }^{m}]&= \int _{0}^{1}(\mathbb {P}(\tau _{1}>t^{1/m}))^{N}\,\text {d}t +\int _{1}^{\infty }(\mathbb {P}(\tau _{1}>t^{1/m}))^{N}\,\text {d}t\\&\le \int _{0}^{1}(\mathbb {P}(\tau _{1}^{+}>t^{1/m}))^{N}\,\text {d}t +(\mathbb {P}(\tau _{1}>1))^{N}\int _{1}^{\infty }\frac{\mathbb {P}(\tau _{1}>t^{1/m})}{\mathbb {P}(\tau _{1}>1)}\,\text {d}t. \end{aligned}$$

Therefore, Jensen’s inequality yields

$$\begin{aligned} \frac{\mathbb {E}[T_{3d }^{m}]}{\mathbb {E}[T_{+}^{m}]}&\le \frac{\int _{0}^{1}(\mathbb {P}(\tau _{1}^{+}>t^{1/m}))^{N}\,\text {d}t +(\mathbb {P}(\tau _{1}>1))^{N}\int _{1}^{\infty }\frac{\mathbb {P}(\tau _{1}>t^{1/m})}{\mathbb {P}(\tau _{1}>1)}\,\text {d}t}{(\mathbb {E}[T_{+}])^{1/m}}\\&\le 1+\frac{(\mathbb {P}(\tau _{1}>1))^{N}}{(\mathbb {E}[T_{+}])^{1/m}}\int _{1}^{\infty }\frac{\mathbb {P}(\tau _{1}>t^{1/m})}{\mathbb {P}(\tau _{1}>1)}\,\text {d}t. \end{aligned}$$

To complete the proof, we need only that \(\mathbb {E}[T_{+}]\) decays slower than \((\mathbb {P}(\tau _{1}>1))^{N}\) as \(N\rightarrow \infty \), which is implied by Lemma 7. \(\square \)

Proof of Lemma 7

Let \(T_{1d }\) be the first time that any \({\widetilde{Z}}_{n}\) hits \(z=b\),

$$\begin{aligned} T_{1d } :=\min _{n}\{{\widetilde{\tau }}_{n,bot }\}, \end{aligned}$$

and let \(n_{f }\in \{1,\dots ,N\}\) denote the random index of this fastest \({\widetilde{Z}}_{n}\) particle

$$\begin{aligned} n_{f }\in \{1,\dots ,N:{\widetilde{Z}}_{n_{f }}(T_{1d })=b\}. \end{aligned}$$

Define the event that the fastest particle first escapes the cylinder through the bottom

$$\begin{aligned} A :=\{\tau _{n_{f },side }>T_{1d }\}\cap \{{\widetilde{\tau }}_{n_{f },top }>T_{1d }\} =\{T_{+}=T_{1d }\}. \end{aligned}$$

Since

$$\begin{aligned} T_{+}1_{A}=T_{1d }1_{A}\quad \text {almost surely}, \end{aligned}$$

we can apply the same argument as in Sect. 2 if we can manage to show that \(\sqrt{\mathbb {P}(A^{c})}(\log N)^{m}\rightarrow 0\) as \(N\rightarrow \infty \).

By De Morgan’s laws, we have that

$$\begin{aligned} \mathbb {P}(A^{c})\le \mathbb {P}(\tau _{n_{f },side }\le T_{1d })+\mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le T_{1d }). \end{aligned}$$

The first probability can be handled by the same argument as in Sect. 2.

To handle \(\mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le T_{1d })\), note that

$$\begin{aligned} \mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le T_{1d }) \le \mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le \delta )+\mathbb {P}(T_{1d }\ge \delta )\quad \text {for any }\delta >0. \end{aligned}$$

As in the proof of Theorem 1, we may bound \(\mathbb {P}(T_{1d }\ge \delta )\) for sufficiently small \(\delta >0\) by

$$\begin{aligned} \mathbb {P}(T_{1d }\ge \delta ) =\int _{\delta }^{\infty }N(S_{0}(t))^{N-1}f_{0}(t)\,\text {d}t&\le N(S_{0}(\delta ))^{N-1}\\&\le N\big [1-C_{3}\delta ^{1/2}\exp (-C_{4}/\delta )\big ]^{N-1}. \end{aligned}$$

Furthermore, it is immediate that

$$\begin{aligned} \mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le \delta ) \le \mathbb {P}({\widetilde{\tau }}_{1,top }\le \delta ). \end{aligned}$$

Now, notice that \({\widetilde{\tau }}_{1,top }\) has the same law as the first time a standard Brownian motion, \(W(t)\in \mathbb {R}\), hits \((h-z_{0})/\sqrt{2D}\). In particular, the reflection principle (Durrett 2019) gives

$$\begin{aligned} \mathbb {P}({\widetilde{\tau }}_{1,top }\le t) =2\mathbb {P}(W(t)\ge (h-z_{0})/\sqrt{2D}) =1-\text {erf}((h-z_{0})/\sqrt{4Dt}), \end{aligned}$$

where \(\text {erf}(x)\) denotes the error function with large x behavior given in (5.1). Hence,

$$\begin{aligned} \mathbb {P}({\widetilde{\tau }}_{n_{f },top }\le \delta ) \le \frac{2}{\sqrt{\pi }}\frac{\sqrt{4D\delta }}{(h-z_{0})} \mathrm{e}^{-(h-z_{0})^{2}/(4D\delta )}\quad \text {for sufficiently small }\delta >0. \end{aligned}$$

Taking \(\delta =(\log N)^{-1/2}\) completes the proof. \(\square \)

Proof of Lemma 8

Define the first time that the nth particle leaves a ball centered at \({{\mathbf {x}}}_{0}\) of radius \(z_{0}>0\),

$$\begin{aligned} \tau _{n,ball } :=\inf \{t>0:\Vert \mathbf {X}_{n}(t)-{{\mathbf {x}}}_{0}\Vert \ge z_{0}\}. \end{aligned}$$

It is immediate that the nth particle cannot reach the target \(\partial \Omega _{T }\) before time \(\tau _{n,ball }\). That is,

$$\begin{aligned} \tau _{n,ball }\le \tau _{n}\quad \text {almost surely for each }n\in \{1,\dots ,N\}. \end{aligned}$$
(5.2)

Define the radial process

$$\begin{aligned} R_{n}(t) :=\Vert \mathbf {X}_{n}(t)-{{\mathbf {x}}}_{0}\Vert \quad \text {for }t\ge 0. \end{aligned}$$

Notice that \(R_{n}\) is not a three-dimensional Bessel process, due to the reflecting boundary \(\partial \Omega \). However, \(R_{n}\) does satisfy the following stochastic differential equation,

$$\begin{aligned} \text {d}R_{n}(t) =\text {d}R_{n}^{0}(t)+{{\mathbf {n}}}_{R}(\mathbf {X}_{n}(t))\,\text {d}L_{n}(t), \end{aligned}$$
(5.3)

where \(R_{n}^{0}\) is a 3d Bessel process. In (5.3), \({{\mathbf {n}}}_{R}\) is the radial component of the inner normal field \({{\mathbf {n}}}:\partial \Omega \mapsto \mathbb {R}^{3}\), and \(L_{n}(t)\) is the local time of \(\mathbf {X}_{n}(t)\) on \(\partial \Omega \). More precisely, \(L_{n}(t)\) is nondecreasing and increases only when \(\mathbf {X}_{n}(t)\) is on \(\partial \Omega \). The significance of the local time term in (5.3) is that it forces \(\mathbf {X}_{n}(t)\) to reflect from \(\partial \Omega \).

By our assumption in (3.7) that S in (3.6) is a star domain, we are assured that \({{\mathbf {n}}}_{R}(\mathbf {X}_{n}(t))\le 0\) for all \(t\le \tau _{n,ball }\). Hence, \(R_{n}(t)\le R_{n}^{0}(t)\) for all \(t\le \tau _{n,ball }\). Therefore, \(\tau _{n,ball }^{0}\le \tau _{n,ball }\) almost surely. Hence, \(T_{ball }^{0}\le T_{3d }\) almost surely by (5.2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawley, S.D., Madrid, J.B. A Probabilistic Approach to Extreme Statistics of Brownian Escape Times in Dimensions 1, 2, and 3. J Nonlinear Sci 30, 1207–1227 (2020). https://doi.org/10.1007/s00332-019-09605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09605-9

Keywords

Mathematics Subject Classification

Navigation