Skip to main content

Synchronization in Functional Networks of the Human Brain

Abstract

Understanding the relationship between structural and functional organization represents one of the most important challenges in neuroscience. An increasing amount of studies show that this organization can be better understood by considering the brain as an interactive complex network. This approach has inspired a large number of computational models that combine experimental data with numerical simulations of brain interactions. In this paper, we present a summary of a data-driven computational model of synchronization between distant cortical areas that share a large number of overlapping neighboring (anatomical) connections. Such connections are derived from in vivo measures of brain connectivity using diffusion-weighted magnetic resonance imaging and are additionally informed by the presence of significant resting-state functionally correlated links between the areas involved. The dynamical processes of brain regions are simulated by a combination of coupled oscillator systems and a hemodynamic response model. The coupled oscillatory systems are represented by the Kuramoto phase oscillators, thus modeling phase synchrony between regional activities. The focus of this modeling approach is to characterize topological properties of functional brain correlation related to synchronization of the regional neural activity. The proposed model is able to reproduce remote synchronization between brain regions reaching reasonable agreement with the experimental functional connectivities. We show that the best agreement between model and experimental data is reached for dynamical states that exhibit a balance of synchrony and variations in synchrony providing the integration of activity between distant brain regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

    Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Pérez Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Google Scholar 

  3. Balanov, A.G., Janson, N.B., Postnov, D.E., Sosnovtseva, O.V.: Synchronization: From Simple to Complex. Springer, Berlin (2009)

    MATH  Google Scholar 

  4. Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S.: Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. USA 112, 887 (2015)

    Google Scholar 

  5. Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E.J., Fortuna, L., Kurths, J.: Remote synchronization in star networks. Phys. Rev. E 85, 026208 (2012)

    Google Scholar 

  6. Biswal, B.B.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734 (2010)

    Google Scholar 

  7. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537 (1995)

    Google Scholar 

  8. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Bola, M., Sabel, B.A.: Dynamic reorganization of brain functional networks during cognition. NeuroImage 114, 398 (2015)

    Google Scholar 

  10. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296 (2006)

    Google Scholar 

  11. Breakspear, M., Heitmann, S., Daffertshofer, A.: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010)

    Google Scholar 

  12. Bressler, S.L., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277 (2010)

    Google Scholar 

  13. Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113 (2011)

    Google Scholar 

  14. Bullmore, E.T., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)

    Google Scholar 

  15. Cabral, J., Hugues, E., Sporns, O., Deco, G.: Role of local network oscillations in resting-state functional connectivity. Neuroimage 57, 130 (2011)

    Google Scholar 

  16. Cabral, J., Hugues, E., Kringelbach, M.L., Deco, G.: Modeling the outcome of structural disconnection on resting-state functional connectivity. Neuroimage 62, 1342 (2012)

    Google Scholar 

  17. Cabral, J., Fernandes, H.M., Van Hartevelt, T.J., James, A.C., Kringelbach, M.L.: Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 23, 046111 (2013)

    MathSciNet  Google Scholar 

  18. Cabral, J., Luckhoo, H., Woolrich, M.W., Joensson, M., Mohseni, H., Baker, A., Kringelbach, M.L., Deco, G.: Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90, 423 (2014a)

    Google Scholar 

  19. Cabral, J., Kringelbach, M.L., Deco, G.: Exploring the network dynamics underlying brain activity during rest. Prog. Neurobiol. 114, 102 (2014b)

    Google Scholar 

  20. Carhart-Harris, R., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., Tagliazucchi, E., Schenberg, E.E., Nest, T., Orban, C., Leech, R., Williams, L.T., Williams, T.M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M.I., Nichols, D., Hellyer, P.J., Hobden, P., Evans, J., Singh, K.D., Wise, R.G., Curran, H.V., Feilding, A., Nutt, D.J.: Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. USA 113, 4853 (2016)

    Google Scholar 

  21. Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 7, 715 (2008)

    Google Scholar 

  22. Clayden, J.D.: Imaging connectivity: MRI and the structural networks of the brain. Funct. Neurol. 28, 197 (2013)

    Google Scholar 

  23. Cole, D.M., Smith, S.M., Beckmann, C.F.: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010)

    Google Scholar 

  24. Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848 (2006)

    Google Scholar 

  25. Dang-Vu, T.T., Schabus, M., Desseilles, M., Albouy, G., Boly, M., Darsaud, A., Gais, S., Rauchs, G., Sterpenich, V., Vandewalle, G., Carrier, J., Moonen, G., Balteau, E., Degueldre, C., Luxen, A., Phillips, C., Maquet, P.: Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. USA 105, 15160 (2008)

    Google Scholar 

  26. Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366 (2012)

    Google Scholar 

  27. Deco, G., Kringelbach, M.L.: Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84, 892 (2014)

    Google Scholar 

  28. Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43 (2011)

    Google Scholar 

  29. Deco, G., Jirsa, V.K., McIntosh, A.R.: Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268 (2013)

    Google Scholar 

  30. Demirtas, M., Deco, G.: Chapter 4—computational models of dysconnectivity in large-scale resting-state networks. In: Anticevic, A., Murray, J.D. (eds.) Computational Psychiatry, pp. 87–116. Academic Press, New York (2018)

    Google Scholar 

  31. Desjardins, A.E., Kiehl, K.A., Liddle, P.F.: Removal of confounding effects of global signal in functional MRI analyses. NeuroImage 13, 751 (2001)

    Google Scholar 

  32. Farooq, H., Xu, J., Nam, J.W., Keefe, D.F., Yacoub, E., Georgiou, T., Lenglet, C.: Microstructure imaging of crossing (MIX) white matter fibers from diffusion MRI. Sci. Rep. 6, 38927 (2016)

    Google Scholar 

  33. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1 (1991)

    Google Scholar 

  34. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Google Scholar 

  35. Friston, K., Dolan, R.J.: Computational and dynamic models in neuroimaging. NeuroImage 52, 752 (2010)

    Google Scholar 

  36. Friston, K., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12, 466 (2000)

    Google Scholar 

  37. Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T.: A survey of the sources of noise in fMRI. Psychometrika 78, 396 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Hauptmann, C., Omel’chenko, O.E., Popovych, O., Maistrenko, Y., Tass, P.: Control of spatially patterned synchrony with multisite delayed feedback. Phys. Rev. E 76, 066209 (2007)

    MathSciNet  Google Scholar 

  39. Haynes, J.D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523 (2006)

    Google Scholar 

  40. Heeger, D.J., Ress, D.: What does MRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142 (2002)

    Google Scholar 

  41. Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J.S., Sharp, D.J., Leech, R.: The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 34, 451 (2014)

    Google Scholar 

  42. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Google Scholar 

  43. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035 (2009)

    Google Scholar 

  44. Huang, Z., Dai, R., Wu, X., Yang, Z., Liu, D., Hu, J., Gao, L., Tang, W., Mao, Y., Jin, Y., Wu, X., Liu, B., Zhang, Y., Lu, L., Laureys, S., Weng, X., Northoff, G.: The self and its resting state in consciousness: an investigation of the vegetative state. Hum. Brain Mapp. 35, 1997 (2014)

    Google Scholar 

  45. Hutchings, F., Han, C.E., Keller, S.S., Weber, B., Taylor, P.N., Kaiser, M.: Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11, e1004642 (2015)

    Google Scholar 

  46. Iturria-Medina, Y., Sotero, R.C., Canales-Rodríguez, E.J., Alemán-Gómez, Y., Melie-García, L.: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064 (2008)

    Google Scholar 

  47. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063 (2004)

    Google Scholar 

  48. Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C., Behrens, T.E.: Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546 (2015)

    Google Scholar 

  49. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960 (1996)

    Google Scholar 

  50. Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107, 11163 (2010)

    Google Scholar 

  51. Keane, A., Dahms, T., Lehnert, J., Suryanarayana, S.A., Hövel, P., Schöll, E.: Synchronisation in networks of delay-coupled type-I excitable systems. Eur. Phys. J. B 85, 407 (2012)

    Google Scholar 

  52. Koch, M.A., Norris, D.G., Hund-Georgiadis, M.: An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16, 241 (2002)

    Google Scholar 

  53. Kruggel, F., von Cramon, D.Y., Descombes, X.: Comparison of filtering methods for fMRI datasets. NeuroImage 10, 530 (1999)

    Google Scholar 

  54. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics, vol. 39 of Lecture Notes in Physics, pp. 420–422. Springer, Berlin (1975)

    Google Scholar 

  55. Lehnert, J., Dahms, T., Hövel, P., Schöll, E.: Loss of synchronization in complex neural networks with delay. Europhys. Lett. 96, 60013 (2011)

    Google Scholar 

  56. Liang, X., Tang, M., Dhamala, M., Liu, Z.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)

    Google Scholar 

  57. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131, 945 (2008)

    Google Scholar 

  58. Lowe, M.J.: A historical perspective on the evolution of resting-state functional connectivity with MRI. Magn. Reson. Mater. Phys. 23, 279 (2010)

    Google Scholar 

  59. Masoller, C., Torrent, M.C., García-Ojalvo, J.: Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns. Phys. Rev. E 78, 041907 (2008)

    Google Scholar 

  60. Masoller, C., Torrent, M.C., García-Ojalvo, J.: Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 3255 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Applications to Living Systems. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  62. Muldoon, S.F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S.T., Vettel, J.M., Bassett, D.S.: Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016)

    Google Scholar 

  63. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)

    Google Scholar 

  64. Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A., Latora, V.: Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013)

    Google Scholar 

  65. Noirhomme, Q., Soddu, A., Lehembre, R., Vanhaudenhuyse, A., Boveroux, P., Boly, M., Laureys, S.: Brain connectivity in pathological and pharmacological coma. Front. Syst. Neurosci. 4, 160 (2010)

    Google Scholar 

  66. Onias, H., Viol, A., Palhano-Fontes, F., Andrade, K.C., Sturzbecher, M., Viswanathan, G.M., de Araujo, D.B.: Brain complex network analysis by means of resting state fMRI and graph analysis: will it be helpful in clinical epilepsy? Epilepsy Behav. 38, 71 (2014)

    Google Scholar 

  67. Pikovsky, A., Rosenblum, M.G., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  68. Popovych, O., Yanchuk, S., Tass, P.: Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys. Rev. Lett. 107, 228102 (2011)

    Google Scholar 

  69. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320 (2014)

    Google Scholar 

  70. Rodrigues, F.A., Peron, T.K.D.M., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Rossoni, E., Chen, Y., Ding, M., Feng, J.: Stability of synchronous oscillations in a system of Hodgkin–Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E 71, 061904 (2005)

    MathSciNet  Google Scholar 

  72. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059 (2010)

    Google Scholar 

  73. Rubinov, M., Knock, S.A., Stam, C.J., Micheloyannis, S., Harris, A.W.F., Williams, L.M., Breakspear, M.: Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 30, 403 (2009)

    Google Scholar 

  74. Rudie, J.D., Brown, J.A., Beck-Pancer, D., Hernandez, L.M., Dennis, E.L., Thompson, P.M., Bookheimer, S.Y., Dapretto, M.: Altered functional and structural brain network organization in autism. NeuroImage Clin. 2, 79 (2013)

    Google Scholar 

  75. Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.: Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage 111, 385 (2015)

    Google Scholar 

  76. Schall, J.D.: On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23 (2004)

    Google Scholar 

  77. Schrouff, J., Perlbarg, V., Boly, M., Marrelec, G., Boveroux, P., Vanhaudenhuyse, A., Bruno, M.A., Laureys, S., Phillips, C., Pélégrini-Issac, M., Maquet, P., Benali, H.: Brain functional integration decreases during propofol-induced loss of consciousness. NeuroImage 57, 198 (2011)

    Google Scholar 

  78. Senthilkumar, D.V., Kurths, J., Lakshmanan, M.: Inverse synchronizations in coupled time-delay systems with inhibitory coupling. Chaos 19, 023107 (2009)

    MathSciNet  MATH  Google Scholar 

  79. Seth, A.K., Chorley, P., Barnett, L.C.: Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. NeuroImage 65, 540 (2013)

    Google Scholar 

  80. Shanahan, M.: Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108 (2010)

    MathSciNet  Google Scholar 

  81. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  82. Sporns, O.: Structure and function of complex brain networks. Dialog. Clin. Neurosci. 15, 247 (2013)

    Google Scholar 

  83. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)

    Google Scholar 

  84. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1 (2000)

    MathSciNet  MATH  Google Scholar 

  85. Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., Chialvo, D.R.: Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35, 5442 (2014)

    Google Scholar 

  86. Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme, New York (1988)

    Google Scholar 

  87. Tognoli, E., Kelso, J.A.S.: The metastable brain. Neuron 81, 35 (2014)

    Google Scholar 

  88. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273 (2002)

    Google Scholar 

  89. Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolic, D., Singer, W.: Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009)

    Google Scholar 

  90. van den Heuvel, M.P., Hulshoff Pol, H.E.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519 (2010)

    Google Scholar 

  91. Vása, F., Shanahan, M., Hellyer, P.J., Scott, G., Cabral, J., Leech, R.: Effects of lesions on synchrony and metastability in cortical networks. NeuroImage 118, 456 (2015)

    Google Scholar 

  92. Viol, A., Palhano-Fontes, F., Onias, H., de Araujo, D.B., Viswanathan, G.M.: Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca. Sci. Rep. 7, 7388 (2017)

    Google Scholar 

  93. Vuksanović, V., Hövel, P.: Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage 97, 1 (2014)

    Google Scholar 

  94. Vuksanović, V., Hövel, P.: Dynamic changes in network synchrony reveal resting-state functional networks. Chaos 25, 023116 (2015)

    MathSciNet  Google Scholar 

  95. Vuksanović, V., Hövel, P.: Large-scale neural network model for functional networks of the human cortex. In: Pelster, A., Wunner, G. (eds.) Selforganization in Complex Systems: The Past, Present, and Future of Synergetics, Proceedings of the International Symposium, Hanse Institute of Advanced Studies Delmenhorst, pp. 345–352. Springer, Berlin (2016a). (Understanding Complex Systems)

    Google Scholar 

  96. Vuksanović, V., Hövel, P.: Role of structural inhomogeneities in resting-state brain dynamics. Cogn. Neurodyn. 10, 361 (2016b)

    Google Scholar 

  97. Wang, Q.Y., Lu, Q.S.: Time delay-enhanced synchronization and regularization in two coupled chaotic neurons. Chin. Phys. Lett. 22, 543 (2005)

    Google Scholar 

  98. Wang, Q., Lu, Q., Chen, G.: Synchronization transition induced by synaptic delay in coupled fast-spiking neurons. Int. J. Bifur. Chaos 18, 1189 (2008)

    MathSciNet  MATH  Google Scholar 

  99. Wang, Q., Lu, Q., Chen, G., Feng, Z., Duan, L.X.: Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Solitons Fractals 39, 918 (2009)

    Google Scholar 

  100. Wildie, M., Shanahan, M.: Hierarchical clustering identifies hub nodes in a model of resting-state brain activity. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012)

  101. Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R.: Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609 (2007)

    Google Scholar 

  102. Xia, M., Wang, J., He, Y.: Brainnet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8, 1 (2013)

    Google Scholar 

Download references

Acknowledgements

AV and PH acknowledge support by Deutsche Forschungsgemeinschaft under Grant No. HO4695/3-1 and within the framework of Collaborative Research Center 910. We thank Yasser Iturria-Medina for sharing the DW-MRI data including fiber lengths used in the study. We also thank Jason Bassett for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philipp Hövel.

Additional information

Communicated by Paul Newton.

A List of Cortical and Subcortical Regions

A List of Cortical and Subcortical Regions

See Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hövel, P., Viol, A., Loske, P. et al. Synchronization in Functional Networks of the Human Brain. J Nonlinear Sci 30, 2259–2282 (2020). https://doi.org/10.1007/s00332-018-9505-7

Download citation

Keywords

  • Nonlinear dynamics
  • Synchronization
  • Brain connectivity
  • Kuramoto phase oscillator
  • Neural activity

Mathematics Subject Classification

  • 92B25
  • 34C15
  • 92C42