Skip to main content
Log in

Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

A Correction to this article was published on 09 June 2020

This article has been updated

Abstract

The first of N identical independently distributed (i.i.d.) Brownian trajectories that arrives to a small target sets the time scale of activation, which in general is much faster than the arrival to the target of a single trajectory only. Analytical asymptotic expressions for the minimal time is notoriously difficult to compute in general geometries. We derive here asymptotic laws for the probability density function of the first and second arrival times of a large number N of i.i.d. Brownian trajectories to a small target in 1, 2 and 3-dimensions and study their range of validity by stochastic simulations. The results are applied to activation of biochemical pathways in cellular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 09 June 2020

    In section 5.1 entitled ���The shortest NEP from a bounded domain in prviously.

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, North Chelmsford (1964)

    MATH  Google Scholar 

  • Chen, W., Ward, M.J.: The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J. Appl. Dyn. Syst. 10(2), 582–666 (2011)

    MathSciNet  MATH  Google Scholar 

  • Chou, T., Dorsogna, M.: First passage problems in biology. First-Passage Phenom. Their Appl. 35, 306 (2014)

    MathSciNet  Google Scholar 

  • Colin de Verdière, Y.: Spectre du laplacien et longueurs des géodésiques périodiques i. Compos. Math. 27(1), 83–106 (1973)

    MATH  Google Scholar 

  • Freche, D., Pannasch, U., Rouach, N., Holcman, D.: Synapse geometry and receptor dynamics modulate synaptic strength. PLoS ONE 6(10), e25122 (2011)

    Google Scholar 

  • Gross, O.P., Pugh, E.N., Burns, M.E.: Calcium feedback to cgmp synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 76(2), 370–382 (2012)

    Google Scholar 

  • Guerrier, C., Korkotian, E., Holcman, D.: Calcium dynamics in neuronal microdomains: Modeling, stochastic simulations, and data analysis. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 486–516. Springer, New York, NY (2015)

    Google Scholar 

  • Hille, B.: Ion Channels of Excitable Membranes, vol. 507. Sinauer, Sunderland (2001)

    Google Scholar 

  • Holcman, D., Schuss, Z.: Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys. 117(5), 975–1014 (2004)

    MathSciNet  MATH  Google Scholar 

  • Holcman, D., Schuss, Z.: Diffusion escape through a cluster of small absorbing windows. J. Phys. A Math. Theor. 41(15), 155001 (2008)

    MathSciNet  MATH  Google Scholar 

  • Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56(2), 213–257 (2014)

    MathSciNet  MATH  Google Scholar 

  • Holcman, D., Schuss, Z.: Stochastic Narrow Escape in Molecular and Cellular Biology. Analysis and Applications. Springer, New York (2015)

    MATH  Google Scholar 

  • Holcman, D., Schuss, Z., Korkotian, E.: Calcium dynamics in dendritic spines and spine motility. Biophys. J. 87(1), 81–91 (2004)

    Google Scholar 

  • Holcman, D., Marchewka, A., Schuss, Z.: Survival probability of diffusion with trapping in cellular neurobiology. Phys. Rev. E 72(3), 031910 (2005)

    Google Scholar 

  • Katz, B., Voolstra, O., Tzadok, H., Yasin, B., Rhodes-Modrov, E., Bartels, J.-P., Strauch, L., Huber, A., Minke, B.: The latency of the light response is modulated by the phosphorylation state of drosophila trp at a specific site. Channels 37, 1–8 (2017)

    Google Scholar 

  • Krapivsky, P., Majumdar, S.N., Rosso, A.: Maximum of n independent brownian walkers till the first exit from the half-space. J. Phys. A Math. Theor. 43(31), 315001 (2010)

    MathSciNet  MATH  Google Scholar 

  • Majumdar, S.N., Pal, A.: Extreme value statistics of correlated random variables. (2014). arXiv preprint arXiv:1406.6768

  • Redner, S., Meerson, B.: First invader dynamics in diffusion-controlled absorption. J. Stat. Mech. Theory Exp. 2014(6), P06019 (2014)

    MATH  Google Scholar 

  • Reingruber, J., Pahlberg, J., Woodruff, M.L., Sampath, A.P., Fain, G.L., Holcman, D.: Detection of single photons by toad and mouse rods. Proc. Natl. Acad. Sci. 110(48), 19378–19383 (2013)

    Google Scholar 

  • Schehr, G.: Extremes of n vicious walkers for large n: application to the directed polymer and kpz interfaces. J. Stat. Phys. 149(3), 385–410 (2012)

    MathSciNet  MATH  Google Scholar 

  • Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach, vol. 170. Springer, New York (2009)

    MATH  Google Scholar 

  • Schuss, Z.: Diffusion and Stochastic Processes: An Analytical Approach. Springer Series on Applied Mathematical Sciences, vol. 170. Springer, New York (2010)

    Google Scholar 

  • Schuss, Z.: Brownian Dynamics at Boundaries and Interfaces. Springer, New York (2015)

    Google Scholar 

  • Schuss, Z., Spivak, A.: On recovering the shape of a domain from the trace of the heat kernel. SIAM J. Appl. Math. 66(1), 339–360 (2005)

    MathSciNet  MATH  Google Scholar 

  • Schuss, Z., Singer, A., Holcman, D.: The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci. 104(41), 16098–16103 (2007)

    Google Scholar 

  • Singer, A., Schuss, Z., Holcman, D.: Narrow escape, part iii: non-smooth domains and Riemann surfaces. J. Stat. Phys. 122(3), 491–509 (2006)

    MathSciNet  MATH  Google Scholar 

  • Sokolov, I.M., Metzler, R., Pant, K., Williams, M.C.: First passage time of n excluded-volume particles on a line. Phys. Rev. E 72(4), 041102 (2005)

    Google Scholar 

  • Taflia, A., Holcman, D.: Estimating the synaptic current in a multiconductance ampa receptor model. Biophys. J. 101(4), 781–792 (2011)

    Google Scholar 

  • Volfovsky, N., Parnas, H., Segal, M., Korkotian, E.: Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J. Neurophysiol. 82(1), 450–462 (1999)

    Google Scholar 

  • Yuste, S.B., Lindenberg, K.: Order statistics for first passage times in one-dimensional diffusion processes. J. Stat. Phys. 85(3), 501–512 (1996)

    MathSciNet  MATH  Google Scholar 

  • Yuste, S.B., Acedo, L., Lindenberg, K.: Order statistics for d-dimensional diffusion processes. Phys. Rev. E 64(5), 052102 (2001)

    Google Scholar 

  • Zilman, A., Bel, G.: Crowding effects in non-equilibrium transport through nano-channels. J. Phys. Condens. Matter 22(45), 454130 (2010)

    Google Scholar 

Download references

Acknowledgements

We thank C. Guerrier for her help in designing the two-dimensional simulations. This research was supported by the Foundation pour la Recherche Médicale—Équipes FRM 2016 grant DEQ20160334882.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Holcman.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basnayake, K., Schuss, Z. & Holcman, D. Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions. J Nonlinear Sci 29, 461–499 (2019). https://doi.org/10.1007/s00332-018-9493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9493-7

Keywords

Mathematics Subject Classification

Navigation