Skip to main content

The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the \(\tau \)-function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

This is a preview of subscription content, access via your institution.

References

  • Adler, M., Horozov, E., van Moerbeke, P.: The Pfaff lattice and skew-orthogonal polynomials. Int. Math. Res. Not. 11, 569–588 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  • Adler, M., Shiota, T., van Moerbeke, P.: Random matrices, vertex operators and the Virasoro algebra. Phys. Lett. A 208, 67–78 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  • Adler, M., van Moerbeke, P.: Matrix integrals, toda symmetries, virasoro constraints, and orthogonal polynomials. Duke Math. J. 80, 863–911 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  • Adler, M., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. (2) 149, 921–976 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  • Adler, M., van Moerbeke, P.: Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice. Commun. Math. Phys. 237(3), 397–440 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  • Alexandrov, A., Zabrodin, A.: Free fermions and tau-functions. J. Geom. Phys. 67, 37–80 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  • Bertola, M., Eynard, B., Harnad, J.: Partition functions for matrix models and isomonodromic tau functions. J. Phys. A 36, 3067–3083 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  • Bertola, M., Eynard, B., Harnad, J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Commun. Math. Phys. 263(2), 401–437 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  • Bertola, M., Gekhtman, M., Szmigielski, J.: Peakons and Cauchy biorthogonal polynomials. Symmetry Perturbation Theory 162(4), 23–37 (2009)

    MATH  Google Scholar 

  • Bertola, M., Gekhtman, M., Szmigielski, J.: The Cauchy two-matrix model. Commun. Math. Phys. 287, 983–1014 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  • Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy biorthogonal polynomials. J. Approx. Theory 162, 832–867 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  • Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy–Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326, 111–144 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  • Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144–150 (1990)

    MathSciNet  Article  Google Scholar 

  • Chang, X., Hu, X., Li, S.: Degasperis-Procesi peakons and finite Toda lattice of CKP type: isospectral deformations of tau-functions related to Cauchy kernel (2017). arXiv: 1712.08306

  • Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. 6. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn. 50, 3813–3818 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  • Forrester, P., Kieburg, M.: Relating the Bures measure to the Cauchy two-matrix model. Commun. Math. Phys. 342, 151–187 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  • Gross, D., Migdal, A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64(2), 127–130 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  • Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B. 357, 565–618 (1991)

    MathSciNet  Article  Google Scholar 

  • Hanard, J., Orlov, A.: Fermionic construction of partition function for two-matrix models and perturbative Schur function expansions. J. Phys. A 28, 8783–8809 (2006)

    MathSciNet  MATH  Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Hu, X.B., Li, S.H.: The partition function of the Bures ensembles as the \(\tau \)-function of BKP and DKP hierarchies: continuous and discrete. J. Phys. A 50, 285201 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  • Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  • Lundmark, H., Szmigielski, J.: Degasperis–Procesi peakons and the discrete cubic string. IMRP Int. Math. Res. Pap. 2, 53–116 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  • Marshakov, A., Mironov, A., Morozov, A.: Generalized Matrix Models as Conformal Field Theories. Discrete case. Phys. Lett. B 265, 99–107 (1991)

    MathSciNet  Article  Google Scholar 

  • Mehta, M.: A method of integration over matrix variables. Commun. Math. Phys. 79, 327–340 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  • Mehta, M.: Random Matrices, 3rd edn. Elsevier/Academic Press, London (2004)

    MATH  Google Scholar 

  • Miki, H., Tsujimoto, S.: Cauchy biorthogonal polynomials and discrete integrable systems. J. Nonlinear Syst. Appl. 2, 195–199 (2011)

    Google Scholar 

  • Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions (2012). arXiv: math-ph/12014518.

  • Orlov, A.Yu., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies II. Multiple integrals (2016). arXiv: 1611.02244

  • van der Leur, J.W., Orlov, A., Shiota, T.: CKP hierarchy, bosonic tau function and bosonization formulae. SIGMA 8, 03628 (2012)

    MathSciNet  MATH  Google Scholar 

  • Wang, H.: The \(2+1\) dimensional Kaup–Kuperschmidt equation with self-consistent sources and its exact solutions, nonlinear and modern mathematical physics. In: AIP Conference Proceedings, vol. 1212, no. 1, 273–279 (2010)

  • Wang, N., Li, C.: Quantum torus algebras and B(C)-type Toda systems. J. Nonlinear Sci. 27, 1957–1970 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  • Xu, Y.: Biorthogonal polynomials and total positive functions. J. Phys. A: Math. Gen. 35, 5499–5510 (2002)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11271266, 11705284 and 11701550) and Beijing Natural Science Foundation (Grant No. 1162003). The authors would like to thank the referee for valuable suggestions and bringing the article (Bertola et al. 2006) into our horizons, which is of great help for further study. Dr. C. X. Li would like to thank for the hospitality of School of Mathematics and Science during her visit to Fudan University. S. H. Li would like to thank Dr. X. K. Chang and Mr. B. Wang for helpful discussions and thank Prof. X. B. Hu for his attentive guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hao Li.

Additional information

Communicated by Paul Newton.

Proofs of Propositions 3.1 and 3.3 by Pfaffians

Proofs of Propositions 3.1 and 3.3 by Pfaffians

In this appendix, we first give a brief review on some known facts about Pfaffians and then prove Propositions 3.1 and 3.3 by Pfaffian techniques. It turns out that the C-Toda lattice is nothing but Pfaffian identities with the \(\tau \)-functions given by determinants.

The term Pfaffian was introduced by Arthur Cayley in 1852, who named it after Johann Friedrich Pfaff. Pfaffian is generally used in theoretical physics nowadays. Let us first have a look at the definition of a Pfaffian. Let \(A=(a_{i,j})_{1\le i,j\le 2N}\) be a \(2N\times 2N\) skew-symmetric matrix. The Pfaffian of A, that is, Pf(A) is defined as

$$\begin{aligned} Pf(A)&=Pf(a_{i,j})_{1\le i,j\le 2N}=Pf\left[ \begin{array}{cccc} 0&{}a_{1,2}&{}\cdots &{}a_{1,{2N}}\\ -a_{1,2}&{}0&{}\cdots &{}a_{2,{2N}}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ -a_{1,{2N}}&{}-a_{2,{2N}}&{}\cdots &{}0 \end{array} \right] \\&=\sum {'sgn}\left( \begin{array}{cccc} 1&{}2&{}\cdots &{}2N\\ j_1&{}j_2&{}\cdots &{}j_{2N} \end{array} \right) a_{j_1j_2}a_{j_3j_4}\cdots a_{j_{2N-1}j_{2N}}, \end{aligned}$$

where \(\sum '\) means the sum over all possible combinations of pairs selected from \(\{1,2,\ldots ,2N\}\) satisfying \(j_1<j_2\), \(\ldots \), \(j_{2N-1}<j_{2N}\) and \(j_1<j_3<\cdots <j_{2N-1}\). As an equivalent definition, an n-th order Pfaffian \(pf(1,2,\ldots , 2N)\) can be expanded as

$$\begin{aligned} pf(1,2,\ldots , 2N)=\sum _{j=2}^{2N}(-1)^jpf(1,j)pf(2,3,\ldots ,{\hat{j}},\ldots ,2N) \end{aligned}$$

where \({\hat{j}}\) means that the index j is omitted. By this formula, the Pfaffian \(pf(1,2,\ldots , 2N)\) may be recursively defined when Pfaffian entries pf(ij) are given. It is obvious that \(pf(1,2,\ldots , 2N)=Pf(A)\) when \((i,j)=a_{i,j}\). In this sense, the above-mentioned two definitions can be unified.

In the remaining part, we would like to adopt the notation below to denote a Pfaffian

$$\begin{aligned} pf(i_1,i_2,\ldots ,i_{2N})=Pf\left[ \begin{array}{cccc} 0&{}a_{i_1,i_2}&{}\cdots &{}a_{i_1,i_{2N}}\\ -a_{i_1,i_2}&{}0&{}\cdots &{}a_{i_2,i_{2N}}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ -a_{i_1,i_{2N}}&{}-a_{i_2,i_{2N}}&{}\cdots &{}0 \end{array} \right] , \end{aligned}$$

where the Pfaffian elements \(pf(i_j,i_k)=a_{i_j,i_k}\).

It is noted that any n-th order determinant can be expressed as an n-th order Pfaffian. Therefore, if we define Pfaffian entries by

$$\begin{aligned} pf(i,j)=pf(i^*,j^*)=0,\ \ pf(i,j^*)=I_{i,j}, \end{aligned}$$

then \(\tau _n\) and \({\tilde{\tau }}_n\) given before can be also expressed by means of Pfaffians as

$$\begin{aligned}&\tau _n=pf(0,1,\ldots ,n-1,n-1^*,\ldots ,1^*,0^*),\\&{\tilde{\tau }}_n=pf(0,1,\ldots ,n-2,n,n-1^*,\ldots ,1^*,0^*). \end{aligned}$$

Proposition A.1

For the Pfaffian \(\tau _n=pf(0,1,\ldots ,n-1,n-1^*,\ldots ,1^*,0^*)\) defined above, if its Pfaffian entries satisfy the relation

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}pf(i,j^*)=pf(i,j+1^*)+pf(i+1,j^*), \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\tau _n&= \frac{\mathrm{d}}{\mathrm{d}t}pf(0,\ldots ,n-1,n-1^*,\ldots ,0^*)\nonumber \\&=2pf(0,\ldots ,n-2,n,n-1^*,\ldots ,0^*)\nonumber \\&=2{\tilde{\tau }}_n. \end{aligned}$$
(A.1)

Proof

Let us first prove the following equality

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}pf(i_1,\ldots ,i_N,j_1^*,\ldots ,j_N^*)=&\sum _{k=1}^Npf(i_1,\ldots ,i_k+1,\ldots ,i_N,j_1^*,\ldots ,j_N^*)\nonumber \\&+\sum _{k=1}^Npf(i_1,\ldots ,i_N,j_1^*,\ldots ,j_k+1^*,\ldots ,j_N^*) \end{aligned}$$
(A.2)

with the Pfaffian entries defined by

$$\begin{aligned}&pf(i_k,i_l)=pf(j_k^*,j_l^*)=0, \\&\frac{\mathrm{d}}{\mathrm{d}t}pf(i_k,j_l^*)=pf(i_k,j_l+1^*)+pf(i_k+1,j_j^*). \end{aligned}$$

In what follows, we are going to prove (A.2) by induction. It is obvious that (A.2) is true for \(N=1\). Assume that (A.2) holds for N. For \(N+1\), we have

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}pf(i_1,\ldots ,i_N,i_{N+1},j_1^*,\ldots ,j_N^*,j_{N+1}^*)\\&\quad =\frac{\mathrm{d}}{\mathrm{d}t}\left[ \sum _{l=1}^{N+1}(-1)^{N+l}pf(i_{N+1},j_l^*)pf(i_1,\ldots ,i_N,j_1^*,\ldots ,{\hat{j}}_l^*,\ldots ,j_{N+1}^*)\right] \\&\quad =\sum _{l=1}^{N+1}(-1)^{N+l}\left[ pf(i_{N+1}+1,j_l^*)\right. \\&\left. \qquad +\,pf(i_{N+1},j_{l}+1^*)\right] pf(i_1,\ldots ,i_N,j_1^*,\ldots ,{\hat{j}}_l^*,\ldots ,j_{N+1}^*)\\&\qquad +\sum _{l=1}^{N+1}(-1)^{N+l}pf(i_{N+1},j_l^*)\\&\qquad \times \left[ \sum _{k=1}^Npf(i_1,\ldots ,i_k+1,\ldots ,i_N,j_1^*,\ldots ,{\hat{j}}_l^*,\ldots ,j_{N+1}^*)\right. \\&\qquad \left. +\sum _{k=1,k\not =l}^{N+1}pf(i_1,\ldots ,i_N,j_1,\ldots ,j_k+1^*,\ldots ,{\hat{j}}_l^*,\ldots ,j_{N+1}^*)\right] \\&\quad =\sum _{k=1}^{N+1}pf(i_1,\ldots ,i_k+1,\ldots ,i_{N+1},j_1^*,\ldots ,j_{N+1}^*)\\&\qquad +\sum _{k=1}^{N+1}pf(i_1,\ldots ,i_{N+1},j_1^*,\ldots ,j_k+1^*,\ldots ,j_{N+1}^*), \end{aligned}$$

So far, we have completed the proof of (A.2). Notice that \(pf(0,\ldots ,n-2,n,n-1^*,\ldots ,0^*)=pf(0,\ldots ,n-1,n^*,n-2^*,\ldots ,0^*)\) due to the symmetry \(I_{i,j}=I_{j,i}\). Simply by taking \(\{i_1,\ldots ,i_N\}\) as \(\{0,\ldots ,n-1\}\) and \(\{j_1^*,\ldots ,j_N^*\}\) as \(\{n-1^*,\ldots ,0^*\}\) in (A.2), we have (A.1). \(\square \)

Although Pfaffians may be obtained from antisymmetric determinants, their properties are more varied than those of determinants. Determinantal identities such as Plücker relations and Jacobi identities are extended and unified as Pfaffian identities which are very useful in integrable systems. Here, we list two most useful identities:

$$\begin{aligned}&pf(a_1,a_2,a_3,a_4,1,\ldots ,2n)pf(1,2,\ldots ,2n)\\&\quad =\sum _{j=2}^{4}(-1)^jpf(a_1,a_j,1,\ldots ,2n)pf(a_2,{\hat{a}}_j,a_{4},1,\ldots ,2n),\\&pf(a_1,a_2,a_3,1,\ldots ,2n-1)pf(1,2,\ldots ,2n)\\&\quad =\sum _{j=1}^{3}(-1)^{j-1}pf(a_j,1,\ldots ,2n-1)pf(a_1,{\hat{a}}_j,a_{3},1,\ldots ,2n). \end{aligned}$$

In the following, we demonstrate how to use Pfaffian techniques to prove that \(\tau _n\) and \(\sigma _n\) are solutions to the C-Toda lattice (3.9) as an application.

Proposition A.2

The C-Toda lattice (3.9) has solutions

$$\begin{aligned}&\tau _n=\begin{vmatrix}I_{0,0}&\cdots&I_{0,n-1}\\ \vdots&\vdots \\ I_{n-1,0}&\cdots&I_{n-1,n-1}\end{vmatrix}=pf(0,\ldots ,n-1,n-1^*,\ldots ,0^*),\\&\sigma _n=\begin{vmatrix}I_{0,0}&\cdots&I_{0,n}\\ \vdots&\vdots \\I_{n-1,0}&\cdots&I_{n-1,n}\\w_0&\cdots&w_n\end{vmatrix}=(-1)^npf(d_0,0,\ldots ,n-1,n^*,\ldots ,0^*) \end{aligned}$$

with Pfaffian entries defined by

$$\begin{aligned}&pf(d_0,i)=pf(d_0^*,i^*)=pf(d_0,d_0^*)=0,\\&pf(d_0,i^*)=pf(d_0^*,i)=w_i, \\&\frac{\mathrm{d}}{\mathrm{d}t}pf(i,j^*)=pf(i+1,j^*)+pf(i,j+1^*)=pf(d_0,d_0^*,i,j^*),\\&\frac{\mathrm{d}}{\mathrm{d}t}pf(d_0,i^*)=pf(d_0,i+1^*) \end{aligned}$$

which correspond to the conditions \(\frac{\mathrm{d}}{\mathrm{d}t}I_{i,j}=I_{i+1,j}+I_{i.j+1}=\omega _i\omega _j\), \(\frac{\mathrm{d}}{\mathrm{d}t}\omega _i=\omega _{i+1}\).

Proof

By using derivative formulae for Pfaffians repeatedly, it is easy to derive that

$$\begin{aligned} \tau _{n,t}&=pf(d_0,d_0^*,0,\ldots ,n-1,n-1^*,\ldots ,0^*)\\&=2pf(0,\ldots ,n-2,n,n-1^*,\ldots ,0^*),\\ \tau _{n,tt}&=2pf(d_0,d_0^*,0,\ldots ,n-2,n,n-1^*,\ldots ,0^*). \end{aligned}$$

Substituting the above results into the C-Toda lattice (3.9), we obtain the following two expressions

$$\begin{aligned}&pf(d_0,d_0^*,0,\ldots ,n,n^*,\ldots ,0^*)pf(0,\ldots ,n-1,n-1^*,\ldots ,0^*)\\&\qquad -pf(0,\ldots ,n,n^*,\ldots ,0^*)pf(d_0,d_0^*,0,\ldots ,n-1,n-1^*,\ldots ,0^*)\\&\qquad =pf(d_0,0,\ldots ,n-1,n^*,\ldots ,0^*)pf(d_0^*,0,n,n-1^*,\ldots ,0^*),\\&pf(d_0,d_0^*,0,\ldots ,n-1,n^*,n-2^*,\ldots ,0^*)pf(0,\ldots ,n-1,n-1^*,\ldots ,0^*)\\&\qquad -pf(d_0,d_0^*,0,\ldots ,n-1,n-1^*,\ldots ,0^*)pf(0,\ldots ,n-1,n^*,n-2^*,\ldots ,0^*)\\&\qquad =pf(d_0,0,\ldots ,n-1,n^*,\ldots ,0^*)pf(d_0^*,0,\ldots ,n-1,n-2^*,\ldots ,0^*), \end{aligned}$$

which are indeed two special cases of Pfaffian identities mentioned above. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, SH. The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy. J Nonlinear Sci 29, 3–27 (2019). https://doi.org/10.1007/s00332-018-9474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9474-x

Keywords

  • Matrix models
  • Cauchy biorthogonal polynomials
  • C-Toda lattice
  • CKP hierarchy
  • \(\tau \)-Function theory

Mathematics Subject Classification

  • 37K10
  • 15A15
  • 42C05
  • 35C15