Skip to main content
Log in

Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh–Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. If D is not diagonal, an appropriate change of coordinate can render it diagonal.

  2. The statement of Theorem 3 in Russo and Slotine (2010) is correct; however, the proof needs revision to be complete.

References

  • Abrams, D.M., Pecora, L.M., Motter, A.E.: Introduction to focus issue: patterns of network synchronization. Chaos 26(9), 094601 (2016)

    Google Scholar 

  • Aminzare, Z.: On Synchronous Behavior in Complex Nonlinear Dynamical Systems. Dissertation, Rutgers University, The State University of New Jersey (2015)

  • Aminzare, Z., Sontag, E.D.: Contraction methods for nonlinear systems: A brief introduction and some open problems. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), pp. 3835–3847 (2014a)

  • Aminzare, Z., Sontag, E.D.: Synchronization of diffusively-connected nonlinear systems: results based on contractions with respect to general norms. IEEE Trans. Netw. Sci. Eng. 1(2), 91–106 (2014b)

    MathSciNet  Google Scholar 

  • Aminzare, Z., Shafi, Y., Arcak, M., Sontag, E.D.: Guaranteeing spatial uniformity in reaction-diffusion systems using weighted \(L_2\) -norm contractions. In: Kulkarni, V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 73–101. Springer, Berlin (2014)

    Google Scholar 

  • Arcak, M.: Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems. Automatica 47(6), 1219–1229 (2011)

    MathSciNet  MATH  Google Scholar 

  • Belykh, V.N., Osipov, G.V., Petrov, V.S., Suykens, J.A.K., Vandewalle, J.: Cluster synchronization in oscillatory networks. Chaos 18(3), 037106 (2008)

    MathSciNet  MATH  Google Scholar 

  • Belykh, V.N., Petrov, S., Osipov, G.V.: Dynamics of the finite-dimensional Kuramoto model: global and cluster synchronization. Regular Chaotic Dyn. 20(1), 37–48 (2015)

    MathSciNet  MATH  Google Scholar 

  • Brown, E., Holmes, P., Moehlis, J.: Globally coupled oscillator networks. In: Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, pp 183–215 (2003)

  • Chen, C.C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C.S., Lee, S.T., Tsai, C.H., Tisch, S., Limousin, P., Hariz, M., et al.: Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp. Neurol. 205(1), 214–221 (2007)

    Google Scholar 

  • Chow, C.C., Kopell, N.: Dynamics of spiking neurons with electrical coupling. Neural Computat. 12(7), 1643–1678 (2000)

    Google Scholar 

  • Chung, S.-J., Slotine, J.-J.E., Miller, D.W.: Nonlinear model reduction and decentralized control of tethered formation flight. J. Guid. Control Dyn. 30(2), 390–400 (2007)

    Google Scholar 

  • Dahlquist, G.: Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. Inaugural dissertation, University of Stockholm, Almqvist & Wiksells Boktryckeri AB, Uppsala (1958)

  • Davison, E.N., Dey, B., Leonard, N.E.: Synchronization bound for networks of nonlinear oscillators. In: Proceedings of the 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp 1110–1115 (2016)

  • Demidovič, B.P.: On the dissipativity of a certain non-linear system of differential equations. I. Vestnik Moskov University Series in Mathematical. Methods 1961(6), 19–27 (1961)

    Google Scholar 

  • Demidovič, B.P.: Lektsii po matematicheskoi teorii ustoichivosti. Izdat. Nauka, Moscow (1967)

    Google Scholar 

  • Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Electrical Science. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1975)

    MATH  Google Scholar 

  • Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social interaction. PLoS ONE 5(8), 1–10 (2010)

    Google Scholar 

  • Favaretto, C., Bassett, D.S., Cenedese, A., Pasqualetti, F.: Bode meets kuramoto: synchronized clusters in oscillatory networks. In: Proceedings of American Control Conference (ACC), pp. 2799–2804 (2017a)

  • Favaretto, C., Cenedese, A., Pasqualetti, F.: Cluster Synchronization in Networks of Kuramoto Oscillators. In: Proceedings of the IFAC 2017 World Congress, pp. 2485–2490 (2017b)

  • Ferreira, A.S.R., Arcak, M.: A graph partitioning approach to predicting patterns in lateral inhibition systems. SIAM J. Appl. Dyn. Syst. 12(4), 2012–2031 (2013)

    MathSciNet  MATH  Google Scholar 

  • Fiore, D., Russo, G., di Bernardo, M.: Exploiting nodes symmetries to control synchronization and consensus patterns in multiagent systems. IEEE Control Syst. Lett. 1(2), 364–369 (2017)

    Google Scholar 

  • Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)

    MathSciNet  MATH  Google Scholar 

  • Hartman, P.: On stability in the large for systems of ordinary differential equations. Can. J. Math. 13, 480–492 (1961)

    MathSciNet  MATH  Google Scholar 

  • Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Jouffroy, J.: Some ancestors of contraction analysis. In: Proceedings of the 44th IEEE Conference on Decision and Control 2005 and European Control Conference 2005, pp. 5450–5455 (Dec 2005)

  • Lehnertz, K., Bialonski, S., Horstmann, M.-T., Krug, D., Rothkegel, A., Staniek, M., Wagner, T.: Synchronization phenomena in human epileptic brain networks. J. Neurosci. Methods 183(1), 42–48 (2009)

    Google Scholar 

  • Lewis, D.C.: Metric properties of differential equations. Am. J. Math. 71, 294–312 (1949)

    MathSciNet  MATH  Google Scholar 

  • Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    MathSciNet  MATH  Google Scholar 

  • Lohmiller, W., Slotine, J.: Contraction analysis of nonlinear distributed systems. Int. J. Control 78, 678–688 (2005)

    MATH  Google Scholar 

  • Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20(1), 013120 (2010)

    MathSciNet  MATH  Google Scholar 

  • MacLeod, K., Laurent, G.: Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274(5289), 976–979 (1996)

    Google Scholar 

  • Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    MathSciNet  MATH  Google Scholar 

  • Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nature Phys. 9, 191–197 (2013)

    Google Scholar 

  • Nair, S., Leonard, N.E.: Stable synchronization of mechanical system networks. SIAM J. Control Optim. 47(2), 661–683 (2008)

    MathSciNet  MATH  Google Scholar 

  • Orosz, G., Moehlis, J., Ashwin, P.: Designing the dynamics of globally coupled oscillators. Prog. Theor. Phys. 122(3), 611–630 (2009)

    MATH  Google Scholar 

  • Pavlov, A., Pogromvsky, A., van de Wouv, N., Nijmeijer, H.: Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst. Control Lett. 52, 257–261 (2004)

    MathSciNet  MATH  Google Scholar 

  • Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)

    Google Scholar 

  • Pham, Q.-C., Slotine, J.-J.: Stable concurrent synchronization in dynamic system networks. Neural Netw. 20(1), 62–77 (2007)

    MATH  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, volume 12 of Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Russo, G., Di Bernardo, M.: Contraction theory and master stability function: linking two approaches to study synchronization of complex networks. IEEE Trans. Circuits Syst. 56(2), 177–181 (2009)

    Google Scholar 

  • Russo, G., Slotine, J.-J.E.: Global convergence of quorum-sensing networks. Phys. Rev. E 82(4), 041919 (2010)

    MathSciNet  Google Scholar 

  • Schaub, M.T., O’Clery, N., Billeh, Y.N., Delvenne, J.-C., Lambiotte, R., Barahona, M.: Graph partitions and cluster synchronization in networks of oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26(9), 094821 (2016)

    MathSciNet  MATH  Google Scholar 

  • Sepulchre, R., Paley, D., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53(3), 706–719 (2008)

    MathSciNet  MATH  Google Scholar 

  • Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: a survey. IEEE Netw. 18(4), 45–50 (2004)

    Google Scholar 

  • Smith, H.M.: Synchronous flashing of fireflies. Science 82(2120), 151–152 (1935)

    Google Scholar 

  • Soderlind, G.: The logarithmic norm. History and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)

    MathSciNet  MATH  Google Scholar 

  • Sorrentino, F., Ott, E.: Network synchronization of groups. Phys. Rev. E 76(5), 056114 (2007)

    MathSciNet  Google Scholar 

  • Sorrentino, F., Pecora, L.: Approximate cluster synchronization in networks with symmetries and parameter mismatches. Chaos 26(9), 094823 (2016)

    MathSciNet  MATH  Google Scholar 

  • Sorrentino, F., Pecora, L.M., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv. 2(4), e1501737 (2016)

    Google Scholar 

  • Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2(4), 609–646 (2003)

    MathSciNet  MATH  Google Scholar 

  • Tiberi, L., Favaretto, C., Innocenti, M., Bassett, D.S., Pasqualetti, F.: Synchronization patterns in networks of Kuramoto oscillators: A geometric approach for analysis and control. In: Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pp. 481–486 (2017)

  • Wang, W., Slotine, J.J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92, 38–53 (2005)

    MathSciNet  MATH  Google Scholar 

  • Wang, K., Fu, X., Li, K.: Cluster synchronization in community networks with nonidentical nodes. Chaos 19(2), 023106 (2009)

    MathSciNet  MATH  Google Scholar 

  • Wilson, D., Moehlis, J.: Clustered desynchronization from high-frequency deep brain stimulation. PLoS Comput. Biol. 11(12), e1004673 (2015)

    Google Scholar 

  • Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16(1), 15–42 (1967)

    Google Scholar 

  • Xia, W., Cao, M.: Clustering in diffusively coupled networks. Automatica 47(11), 2395–2405 (2011)

    MathSciNet  MATH  Google Scholar 

  • Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Publications of the Mathematical Society of Japan, No. 9. The Mathematical Society of Japan, Tokyo (1966)

    Google Scholar 

  • Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions. Applied Mathematical Sciences, vol. 14. Springer, New York (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation under NSF-CRCNS grant DMS-1430077 and the Office of Naval Research under ONR Grant N00014-14-1-0635. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant DGE-1656466. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank the anonymous reviewers for their thoughtful and detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Aminzare.

Additional information

Communicated by Danielle S. Bassett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzare, Z., Dey, B., Davison, E.N. et al. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach. J Nonlinear Sci 30, 2235–2257 (2020). https://doi.org/10.1007/s00332-018-9457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9457-y

Keywords

Navigation