Skip to main content
Log in

Dynamics of a Stochastic Predator–Prey Model with Stage Structure for Predator and Holling Type II Functional Response

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we develop and study a stochastic predator–prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Omari, J.F.M.: The effect of state dependent delay on harvesting on a stage-structured predator–prey model. Appl. Math. Comput. 271, 142–153 (2015)

    MathSciNet  Google Scholar 

  • Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993)

    MATH  Google Scholar 

  • Beddington, J.R., May, R.M.: Harvesting natural populations in a randomly fluctuating environment. Science 197, 463–465 (1977)

    Article  Google Scholar 

  • Braumann, C.A.: Growth and extinction of populations in randomly varying environments. Comput. Math. Appl. 56, 631–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, L., Wang, X., Peng, M.: Hopf bifurcation analysis for a ratio-dependent predator–prey system with two delays and stage structure for the predator. Appl. Math. Comput. 231, 214–230 (2014)

    MathSciNet  Google Scholar 

  • Freeman, H.I., Wu, J.: Persistence and global asymptotic stability of single species dispersal models with stage structure. Q. Appl. Math. 49, 351–371 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46, 357–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C.: Stability for multispecies population models in random environments. Nonlinear Anal. 10, 1411–1419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Georgescu, P., Hsieh, Y.-H.: Global dynamics of a predator–prey model with stage structure for predator. SIAM J. Appl. Math. 67, 1379–1395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Georgescu, P., Moroşanu, G.: Global stability for a stage-structured predator–prey model. Math. Sci. Res. J. 10, 214–226 (2006)

    MathSciNet  MATH  Google Scholar 

  • Georgescu, P., Hsieh, Y.-H., Zhang, H.: A Lyapunov functional for a stage-structured predator–prey model with nonlinear predation rate. Nonlinear Anal. Real World Appl. 11, 3653–3665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ji, C., Jiang, D.: Dynamics of a stochastic density dependent predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 381, 441–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Khasminskii, R.: Stochastic Stability of Differential Equations, 2nd edn. Springer-Verlag, Berlin (2012)

    Book  MATH  Google Scholar 

  • Kutoyants, A.Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2003)

    MATH  Google Scholar 

  • Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific Press, Singapore (1989)

    Book  MATH  Google Scholar 

  • Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discret. Contin. Dyn. Syst. 24, 523–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K.: Global stability of stage-structured predator–prey models with Beddington–DeAngelis functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 3792–3797 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K., Liu, X.: Long term behaviors of stochastic single-species growth models in a polluted environment. Appl. Math. Model. 35, 752–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Q., Zu, L., Jiang, D.: Dynamics of stochastic predator-prey models with Holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 37, 62–76 (2016)

    Article  MathSciNet  Google Scholar 

  • Luo, Q., Mao, X.: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334, 69–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  • May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  • Monod, J.: La technique de la culture continue, theorie et applications. Annales de I’Institut Pasteur 79, 390–410 (1950)

    Google Scholar 

  • Novick, A., Szilard, L.: Description of the chemostat. Science 112, 715–716 (1950)

    Article  Google Scholar 

  • Pang, S., Deng, F., Mao, X.: Asymptotic properties of stochastic population dynamics. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal 15, 603–620 (2008)

    MathSciNet  MATH  Google Scholar 

  • Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo, B., Poria, S.: Diseased prey predator model with general Holling type interactions. Appl. Math. Comput. 226, 83–100 (2014)

    MathSciNet  MATH  Google Scholar 

  • Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001)

    Article  Google Scholar 

  • Wang, W.: Global dynamics of a population model with stage structure for predator. In: Chen, L., Ruan, S., Zhu, J. (eds.) Advanced Topics in Biomathematics, pp. 253–257. World Scientific, River Edge (1997)

    Google Scholar 

  • Wang, W., Chen, L.: A predator–prey system with stage-structure for predator. Comput. Math. Appl. 33, 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  • Wang, W., Mulone, G., Salemi, F., Salone, V.: Permanence and stability of a stage-structured predator–prey model. J. Math. Anal. Appl. 262, 499–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang, Z., Li, Y., Song, X.: Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy. Nonlinear Anal. Real World Appl. 10, 2335–2345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Y., Chen, L.: Global stability of a predator–prey system with stage structure for the predator. Acta Math. Sin. (Engl. Ser.) 20, 63–70 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, R., Ma, Z.: Stability and Hopf bifurcation in a predator–prey model with stage structure for the predator. Nonlinear Anal. Real World Appl. 9, 1444–1460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Q., Jiang, D.: The coexistence of a stochastic Lotka–Volterra model with two predators competing for one prey. Appl. Math. Comput. 269, 288–300 (2015)

    MathSciNet  Google Scholar 

  • Zhang, T., Teng, Z.: Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. Chaos Solitons Fract. 37, 1456–1468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Q., Jiang, D., Liu, Z., O’Regan, D.: The long time behavior of a predator–prey model with disease in the prey by stochastic perturbation. Appl. Math. Comput. 245, 305–320 (2014)

    MathSciNet  MATH  Google Scholar 

  • Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control. Optim. 46, 1155–1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor and the anonymous referees for their careful reading and valuable comments, which greatly improved the presentation of the paper. We also thank the National Natural Science Foundation of People’s Republic of China (No. 11371085), Natural Science Foundation of Guangxi Province (No. 2016GXNSFBA380006), the Fundamental Research Funds for the Central Universities (No. 15CX08011A), KY2016YB370 and 2016CSOBDP0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Additional information

Communicated by Charles R. Doering.

Appendices

Appendix A: Calculation of the Derivation of the Bound

Making use of Itô’s formula leads to

$$\begin{aligned} L(V_{5})= & {} \bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\bigg [x(r-ax)\\&-\,\frac{D+d_{1}}{2k}y-\frac{d_{2}(D+d_{1})}{2Dk}z\bigg ]+\frac{\theta }{2} \bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta -1}\\&\times \,\bigg (\sigma _{1}^{2}x^{2}+\displaystyle \frac{\sigma _{2}^{2}}{k^{2}}y^{2}+\frac{(D+d_{1})^{2}}{4D^{2}k^{2}}\sigma _{3}^{2}z^{2}\bigg )\\\le & {} \bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\bigg [x(r-ax)-\frac{D+d_{1}}{2k}y-\frac{d_{2}(D+d_{1})}{2Dk}z\bigg ]\\&+\,\frac{\theta }{2}\bigg (x+ \displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta +1}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\\\le & {} rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }-ax^{\theta +2}-\frac{d_{1}}{2k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{(2Dk)^{\theta +1}}z^{\theta +1}\\&+\,\frac{\theta }{2}\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta +1}\times (\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\\= & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&+\,rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }+\frac{\theta }{2}\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta +1}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\\\le & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\frac{a}{2}x^{\theta +2} -\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&+\,rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\\&+\,\frac{3^{\theta }\theta }{2}\bigg (x^{\theta +1}+\bigg (\displaystyle \frac{y}{k}\bigg )^{\theta +1}+\bigg (\frac{D +d_{1}}{2Dk}\bigg )^{\theta +1}z^{\theta +1}\bigg )(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\nonumber \\ \end{aligned}$$
$$\begin{aligned}= & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\frac{a}{2}x^{\theta +2}+\frac{3^{\theta }\theta }{2}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})x^{\theta +1}+rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\\&-\,\displaystyle \frac{d_{1}}{8k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}-\bigg (\frac{d_{1}}{8k^{\theta +1}}-\frac{3^{\theta } \theta }{2k^{\theta +1}}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\bigg )y^{\theta +1}\\&-\,\bigg (\displaystyle \frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}-\frac{3^{\theta }\theta (D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})\bigg )z^{\theta +1}\\\le & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\frac{a}{2}x^{\theta +2}+ \frac{3^{\theta }\theta }{2}(\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2})x^{\theta +1}+rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\\&-\,\displaystyle \frac{d_{1}}{8k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\\= & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\frac{a}{2}x^{\theta +2}+ \frac{3^{\theta }\theta }{2}\sigma _{\max }x^{\theta +1}+rx\bigg (x+\displaystyle \frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\\&-\,\displaystyle \frac{d_{1}}{8k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\\\le & {} -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}+B, \end{aligned}$$

where

$$\begin{aligned}&\sigma _{\max }{:}{=}\,\sigma _{1}^{2}\vee \sigma _{2}^{2}\vee \sigma _{3}^{2}=\max \{\sigma _{1}^{2},\sigma _{2}^{2},\sigma _{3}^{2}\},\\&\quad B=\sup _{(x,y,z)\in \mathbb {R}_{+}^{3}}\bigg \{-\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{8k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}} z^{\theta +1}\\&+\,\frac{3^{\theta }\theta }{2}\sigma _{\max }x^{\theta +1}+rx\bigg (x+\frac{y}{k}+\frac{D+d_{1}}{2Dk}z\bigg )^{\theta }\bigg \} \end{aligned}$$

and in the third inequality we have used the fact that \(|\sum _{i=1}^{k}v_{i}|^{p}\le k^{p-1}\sum _{i=1}^{k}|v_{i}|^{p}\) for \(\forall p\ge 1\).

Appendix B: Verification of the Condition \(A_{2}\) in Lemma 2.1

By system (1.2), we have

$$\begin{aligned} L(x)=x(r-ax)-\displaystyle \frac{bxz}{1+mx}\le x(r-ax)\le -\frac{r}{m}(1+mx)+\frac{r(a+mr)}{am},\qquad \end{aligned}$$
(B.1)

where the second inequality holds due to the fact that \(a(x-\frac{r}{a})^{2}\ge 0\). Moreover, we obtain

$$\begin{aligned} L(-\ln y)=-\displaystyle \frac{kbxz}{(1+mx)y}+D+d_{1}+\frac{\sigma _{2}^{2}}{2} \end{aligned}$$
(B.2)

and

$$\begin{aligned} L(-\ln z)=-\displaystyle \frac{Dy}{z}+d_{2}+\frac{\sigma _{3}^{2}}{2}. \end{aligned}$$
(B.3)

It follows from (B.1), (B.2) and (B.3) that

$$\begin{aligned} L(V_{1})\le & {} -\frac{kbxz}{(1+mx)y}-\frac{c_{1}r}{m}(1+mx)-\frac{c_{2}Dy}{z}+\bigg (D+d_{1}+\frac{\sigma _{2}^{2}}{2}\bigg )\nonumber \\&+\,\frac{c_{1}r(a+mr)}{am}+c_{2}\bigg (d_{2}+\frac{\sigma _{3}^{2}}{2}\bigg )\nonumber \\ {}\le & {} -3\root 3 \of {\displaystyle \frac{c_{1}c_{2}kbDr}{m}}\root 3 \of {x}+\bigg (D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\bigg )+\frac{c_{1}r(a+mr)}{am} \nonumber \\&+\,c_{2}\bigg (d_{2}+\frac{\sigma _{3}^{2}}{2}\bigg ), \end{aligned}$$
(B.4)

where in the second inequality we have used Lemma 4.1. Moreover, we get

$$\begin{aligned} L\bigg (\frac{x}{r}\bigg )=x\bigg (1-\frac{ax}{r}\bigg )-\frac{bxz}{r(1+mx)}\le x\bigg (1-\frac{ax}{r}\bigg ) \end{aligned}$$

and

$$\begin{aligned} L\bigg (-\frac{\ln x}{r}\bigg )=-\bigg (1-\frac{ax}{r}\bigg )+\frac{bz}{r(1+mx)}+\frac{\sigma _{1}^{2}}{2r}\le \frac{ax}{r}-1+\frac{b}{r}z+\frac{\sigma _{1}^{2}}{2r}. \end{aligned}$$

In view of Lemma 4.2, we have

$$\begin{aligned} L(V_{2})\le \bigg [\displaystyle \frac{2}{3}\frac{ax}{r}\bigg (1-\frac{ax}{r}\bigg )+\frac{ax}{r}\bigg ]-1+\frac{b}{r}z+\frac{\sigma _{1}^{2}}{2r}\le \root 3 \of {\frac{a}{r}}\root 3 \of {x}-1+ \frac{b}{r}z+\frac{\sigma _{1}^{2}}{2r}.\nonumber \\ \end{aligned}$$
(B.5)

Therefore, by (B.4) and (B.5), one can see that

$$\begin{aligned} L(V_{3})\le & {} -3\root 3 \of {\frac{c_{1}c_{2}kbDr}{m}}\root 3 \of {x}+\bigg (D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\bigg )\nonumber \\&+\,\frac{c_{1}r(a+mr)}{am}+c_{2}\bigg (d_{2}+\frac{ \sigma _{3}^{2}}{2}\bigg )+3\root 3 \of {\frac{c_{1}c_{2}kbDr}{m}}\root 3 \of {x}\nonumber \\&-\,3\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}\bigg (1-\frac{\sigma _{1}^{2}}{2r}\bigg )+\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z\nonumber \\= & {} \bigg (D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\bigg )+\frac{c_{1}r(a+mr)}{am}+c_{2}\bigg (d_{2}+\frac{\sigma _{3}^{2}}{2}\bigg )\nonumber \\&-\,3\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}\bigg (1-\frac{\sigma _{1}^{2}}{2r}\bigg ) +\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z. \end{aligned}$$
(B.6)

Taking \(c_{1}=\frac{kbDam\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{3}}{(a+mr)^{2}\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\), \(c_{2}=\frac{kbDr\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{3}}{(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) ^{2}}\), according to (B.6), we obtain

$$\begin{aligned} L(V_{3})\le & {} \bigg (D+d_{1}+\frac{\sigma _{2}^{2}}{2}\bigg )+\frac{2kbDr}{(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\bigg (1-\frac{\sigma _{1}^{2}}{2r}\bigg )^{3}\nonumber \\&-\,\frac{3kbDr}{(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\bigg (1-\frac{\sigma _{1}^{2}}{2r}\bigg )^{3}+\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z\nonumber \\= & {} -\bigg (D+d_{1}+\frac{\sigma _{2}^{2}}{2}\bigg )\left( R_{0}^{S}-1\right) +\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z, \end{aligned}$$
(B.7)

where

$$\begin{aligned} R_{0}^{S}=\frac{kbDr}{(a+mr)\left( D+d_{1}+\frac{\sigma _{2}^{2}}{2}\right) \left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\bigg (1-\frac{\sigma _{1}^{2}}{2r}\bigg )^{3}. \end{aligned}$$

Noting that

$$\begin{aligned}&L\bigg (\frac{3b}{d_{2}r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z+\frac{3bD}{d_{2}r(D+d_{1})}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}y\bigg )\nonumber \\&=\frac{3k^{2}b ^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}\nonumber \\&\quad +\,\frac{3bD}{d_{2}r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}y-\frac{3bD}{ d_{2}r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}y-\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z\nonumber \\&=\frac{3k^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1 })(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}-\frac{3b}{r}\root 3 \of {\frac{c_{1}c_{2}kbDr^{2}}{ma}}z, \end{aligned}$$
(B.8)

then by (B.7) and (B.8), we obtain

$$\begin{aligned} L(V_{4})\le & {} -\bigg (D+d_{1}+\frac{\sigma _{2}^{2}}{2}\bigg )\left( R_{0}^{S}-1\right) +\frac{3k^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}\nonumber \\ {}= & {} -\lambda +\frac{3k^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}, \end{aligned}$$
(B.9)

where

$$\begin{aligned} \lambda :=\bigg (D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\bigg )\left( R_{0}^{S}-1\right) >0. \end{aligned}$$

Furthermore, we have (see Appendix A for a detailed derivation)

$$\begin{aligned} L(V_{5})\le -\displaystyle \frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}+B, \end{aligned}$$
(B.10)

where B is a positive constant, depending only on the system parameters, whose precise definition can be found in Appendix A.

It follows from (B.2), (B.9) and (B.10) that

$$\begin{aligned} L(V)\le & {} -M\lambda +\displaystyle \frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}-\frac{kbxz}{y(1+mx)} \\&-\,\frac{a}{2}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +2}(Dk)^{\theta +1}}z^{\theta +1}\\&+\,B+D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\\= & {} -M\lambda +\displaystyle \frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}\\&-\,\frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\\&-\,\displaystyle \frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}+B+D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}. \end{aligned}$$

In order to validate the condition \(A_{2}\) in Lemma 2.1 holds, we only need to construct a bounded open set U. Define a bounded open set U as

$$\begin{aligned} U=\bigg \{(x,y,z)\in \mathbb {R}_{+}^{3}:\epsilon<x<\frac{1}{\epsilon },\epsilon ^{3}<y<\frac{1}{\epsilon ^{3}},\epsilon<z<\frac{1}{\epsilon }\bigg \}, \end{aligned}$$

where \(0<\epsilon <1\) is a sufficiently small number. In the set \(\mathbb {R}_{+}^{3}\setminus U\), we can choose \(\epsilon \) sufficiently small such that the following conditions hold

$$\begin{aligned}&\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}\theta \epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +1)(1+m\epsilon )}\le 1, \end{aligned}$$
(B.11)
$$\begin{aligned}&\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}\epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +1)(1+m\epsilon )}\le \frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}},\qquad \quad \end{aligned}$$
(B.12)
$$\begin{aligned}&0<\epsilon \le \displaystyle \frac{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +2)}{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}(\theta +1)}, \end{aligned}$$
(B.13)
$$\begin{aligned}&0<\epsilon \le \displaystyle \frac{ad_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +2)}{12Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}, \end{aligned}$$
(B.14)
$$\begin{aligned}&-\displaystyle \frac{kb}{\epsilon (1+m\epsilon )}+C\le -1, \end{aligned}$$
(B.15)
$$\begin{aligned}&-\displaystyle \frac{a}{4\epsilon ^{\theta +2}}+C\le -1, \end{aligned}$$
(B.16)
$$\begin{aligned}&-\displaystyle \frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk\epsilon )^{\theta +1}}+C\le -1, \end{aligned}$$
(B.17)
$$\begin{aligned}&-\displaystyle \frac{d_{1}}{4(k\epsilon ^{3})^{\theta +1}}+C\le -1, \end{aligned}$$
(B.18)

where C is a positive constant which will be given explicitly in expression (B.22). For convenience, we can divide \(U^{c}=\mathbb {R}_{+}^{3}\setminus U\) into six domains,

$$\begin{aligned} U_{1}= & {} \{(x,y,z)\in \mathbb {R}_{+}^{3}:0<x\le \epsilon \},~U_{2}=\{(x,y,z)\in \mathbb {R}_{+}^{3}:0<z\le \epsilon \},\\ U_{3}= & {} \{(x,y,z)\in \mathbb {R}_{+}^{3}:0<y\le \epsilon ^{3},x>\epsilon , z>\epsilon \},~U_{4}=\bigg \{(x,y,z)\in \mathbb {R}_{+}^{3}:x\ge \frac{1}{\epsilon }\bigg \},\\ U_{5}= & {} \bigg \{(x,y,z)\in \mathbb {R}_{+}^{3}:z\ge \frac{1}{\epsilon }\bigg \},~U_{6}=\bigg \{(x,y,z)\in \mathbb {R}_{+}^{3}:y\ge \frac{1}{\epsilon ^{3}}\bigg \}. \end{aligned}$$

Clearly, \(U^{c}=U_{1}\cup U_{2}\cup U_{3}\cup U_{4}\cup U_{5}\cup U_{6}\). Next, we prove that \(L(V(x,y,z))\le -1\) for any \((x,y,z)\in U^{c}\), which is equivalent to proving it on the above six domains, respectively.

Case 1 For any \((x,y,z)\in U_{1}\), since \(\frac{xz}{1+mx}\le \frac{\epsilon }{1+m\epsilon }z\le \frac{\epsilon }{1+m\epsilon }\frac{\theta +z^{\theta +1}}{\theta +1}=\frac{\theta \epsilon }{(\theta +1)(1+m\epsilon )}+\frac{\epsilon }{( \theta +1)(1+m\epsilon )}z^{\theta +1}\), we have

$$\begin{aligned} L(V)\le & {} -M\lambda +\displaystyle \frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}\theta \epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +1) (1+m\epsilon )}\nonumber \\&+\,\bigg (\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}\epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +1)(1+m\epsilon )}\nonumber \\&-\,\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}\bigg )z^{\theta +1}+B+D+d_{1}\nonumber \\&+\,\displaystyle \frac{\sigma _{2}^{2}}{2} \le -2+1+0=-1, \end{aligned}$$
(B.19)

which follows from (4.2), (B.11) and (B.12). Thus

$$\begin{aligned} L(V)\le -1~\text {on}~U_{1}. \end{aligned}$$

Case 2 For any \((x,y,z)\in U_{2}\), since \(\frac{xz}{1+mx}\le xz\le \epsilon x\le \epsilon \frac{\theta +1+x^{\theta +2}}{\theta +2}=\frac{(\theta +1)\epsilon }{\theta +2}+\frac{\epsilon }{\theta +2}x^{\theta +2}\), we obtain

$$\begin{aligned} L(V)\le & {} -M\lambda +\displaystyle \frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}(\theta +1)\epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +2)}\nonumber \\&+\,\bigg (\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2}\epsilon }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) (\theta +2)}-\frac{a}{4}\bigg )x^{\theta +1}\nonumber \\&+B+D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\nonumber \\\le & {} -2+1+0=-1, \end{aligned}$$
(B.20)

which follows from (4.2), (B.13) and (B.14). Hence,

$$\begin{aligned} L(V)\le -1,~\forall (x,y,z)\in U_{2}. \end{aligned}$$

Case 3 For any \((x,y,z)\in U_{3}\), one can get that

$$\begin{aligned} L(V)\le & {} -\displaystyle \frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}\nonumber \\&-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta + 1}}z^{\theta +1}-\frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\nonumber \\&+\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2} }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}+B+D+d_{1}+\frac{\sigma _{2}^{2}}{2}\nonumber \\ {}\le & {} -\frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k ^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}+C\nonumber \\ {}\le & {} -\frac{kbxz}{y(1+mx)}+C\nonumber \\ {}< & {} -\frac{kb\epsilon ^{2}}{\epsilon ^{3}(1+m\epsilon )}+C\nonumber \\ {}= & {} -\frac{kb}{\epsilon (1+m\epsilon )}+C\nonumber \\\le & {} -1, \end{aligned}$$
(B.21)

which follows from (B.15) and

$$\begin{aligned} C= & {} \sup _{(x,y,z)\in \mathbb {R}_{+}^{3}}\bigg \{-\displaystyle \frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\nonumber \\&+\frac{3Mk^{2}b^{3}D^{2}\left( 1 -\frac{\sigma _{1}^{2}}{2r}\right) ^{2}}{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}+B+D+d_{1}+\displaystyle \frac{\sigma _{2}^{2}}{2}\bigg \}.\nonumber \\ \end{aligned}$$
(B.22)

Therefore,

$$\begin{aligned} L(V)\le -1~\text {on}~U_{3}. \end{aligned}$$

Case 4 For any \((x,y,z)\in U_{4}\), one can see that

$$\begin{aligned} L(V)\le & {} -\displaystyle \frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta + 1}}z^{\theta +1}\nonumber \\&-\,\frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\nonumber \\&+\,\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2} }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}+B+D+d_{1}+\frac{\sigma _{2}^{2}}{2}\nonumber \\\le & {} -\frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k ^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}+C\nonumber \\ {}\le & {} -\frac{a}{4}x^{\theta +2}+C\nonumber \\< & {} -\frac{a}{4\epsilon ^{\theta +2}}+C\nonumber \\\le & {} -1, \end{aligned}$$
(B.23)

which follows from (B.16). So

$$\begin{aligned} L(V)\le -1,~\forall (x,y,z)\in U_{4}. \end{aligned}$$

Case 5 When \((x,y,z)\in U_{5}\), one can obtain that

$$\begin{aligned} L(V)\le & {} -\,\displaystyle \frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}\nonumber \\&-\,\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta + 1}}z^{\theta +1}-\frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\nonumber \\&+\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2} }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}+B+D+d_{1}+\frac{\sigma _{2}^{2}}{2}\nonumber \\ {}\le & {} -\frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k ^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}+C\nonumber \\\le & {} -\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{ \theta +1}+C\nonumber \\< & {} -\,\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk\epsilon )^{\theta +1}}+C\le -1, \end{aligned}$$
(B.24)

which follows from (B.17). Consequently

$$\begin{aligned} L(V)\le -1~\text {on}~U_{5}. \end{aligned}$$

Case 6 If \((x,y,z)\in U_{6}\), one can see that

$$\begin{aligned} L(V)\le & {} -\,\displaystyle \frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}\nonumber \\&-\,\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta + 1}}z^{\theta +1}-\frac{a}{4}x^{\theta +2}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}\nonumber \\&+\frac{3Mk^{2}b^{3}D^{2}\left( 1-\frac{\sigma _{1}^{2}}{2r}\right) ^{2} }{d_{2}(D+d_{1})(a+mr)\left( d_{2}+\frac{\sigma _{3}^{2}}{2}\right) }\frac{xz}{1+mx}+B+D+d_{1}+\frac{\sigma _{2}^{2}}{2}\nonumber \\ {}\le & {} -\frac{kbxz}{y(1+mx)}-\frac{a}{4}x^{\theta +2}-\frac{d_{1}}{4k ^{\theta +1}}y^{\theta +1}-\frac{d_{2}(D+d_{1})^{\theta +1}}{2^{\theta +3}(Dk)^{\theta +1}}z^{\theta +1}+C\nonumber \\ {}\le & {} -\frac{d_{1}}{4k^{\theta +1}}y^{\theta +1}+C\nonumber \\ {}< & {} -\frac{d_{ 1}}{4(k\epsilon ^{3})^{\theta +1}}+C\nonumber \\\le & {} -1, \end{aligned}$$
(B.25)

which follows from (B.18). As a result

$$\begin{aligned} L(V)\le -1,~\forall (x,y,z)\in U_{6}. \end{aligned}$$

Obviously, from (B.19), (B.20), (B.21), (B.23), (B.24) and (B.25), we obtain that for a sufficiently small \(\epsilon \),

$$\begin{aligned} L(V(x,y,z))\le -1,~\forall (x,y,z)\in \mathbb {R}_{+}^{3}\setminus U. \end{aligned}$$

Hence, the condition \(A_{2}\) in Lemma 2.1 holds.

Appendix C: Detailed Calculation of the Last Integral of (5.16)

$$\begin{aligned}&J_{1}{:}{=}\displaystyle \int _{0}^{\infty }x\pi (x)\mathrm{d}x=Q\sigma _{1}^{-2}\int _{0}^{\infty }x^{\frac{2r}{\sigma _{1}^{2}}-1}\mathrm{e}^{-\frac{2a}{\sigma _{1}^{2}}x}\mathrm{d}x\\&\quad =Q\sigma _{1}^{-2}\int _{0}^{\infty }\bigg (\frac{\sigma _{1}^{2}}{2a}\bigg )^{\frac{2r}{\sigma _{1}^{2}}-1}t^{\frac{2r}{\sigma _{1}^{2}}-1}\mathrm{e}^{-t}\frac{\sigma _{1}^{2}}{2a}\mathrm{d}t=Q\sigma _{1}^{-2}\bigg (\frac{\sigma _{1}^{2}}{2a}\bigg )^{ \frac{2r}{\sigma _{1}^{2}}}\Gamma \bigg (\frac{2r}{\sigma _{1}^{2}}\bigg )\\&\quad =\displaystyle \frac{\sigma _{1}^{2}}{2a}\frac{\Gamma \left( \frac{2r}{\sigma _{1}^{2}}\right) }{\Gamma \left( \frac{2r}{\sigma _{1}^{2}}-1\right) }=\frac{\sigma _{1}^{2}}{2a}\bigg (\frac{2r}{\sigma _{1}^{2}}-1\bigg )= \frac{r-\frac{\sigma _{1}^{2}}{2}}{a} \end{aligned}$$

and

$$\begin{aligned}&J_{2}\,{:}{=}\displaystyle \int _{0}^{\infty }x^{2}\pi (x)\mathrm{d}x=Q\sigma _{1}^{-2}\int _{0}^{\infty }x^{\frac{2r}{\sigma _{1}^{2}}}\mathrm{e}^{-\frac{2a}{\sigma _{1}^{2}}x}\mathrm{d}x\\&\quad =Q\sigma _{1}^{-2}\int _{0}^{\infty } \bigg (\frac{\sigma _{1}^{2}}{2a}\bigg )^{\frac{2r}{\sigma _{1}^{2}}}t^{\frac{2r}{\sigma _{1}^{2}}}\mathrm{e}^{-t}\frac{\sigma _{1}^{2}}{2a}\mathrm{d}t=Q\sigma _{1}^{-2}\bigg (\frac{\sigma _{1}^{2}}{2a}\bigg )^{\frac{2r}{\sigma _{1}^{2}}+1}\Gamma \bigg (\frac{2r}{\sigma _{1}^{2}}+1\bigg )\\&\quad =\bigg (\displaystyle \frac{\sigma _{1}^{2}}{2a}\bigg )^{2}\frac{\Gamma \left( \frac{2r}{\sigma _{1}^{2}}+1\right) }{\Gamma \left( \frac{2r}{\sigma _{1}^{2}}-1\right) }\\&\quad =\bigg (\frac{\sigma _{1}^{2}}{2a}\bigg )^{2}\frac{2r}{\sigma _{1}^{2}}\bigg (\frac{2r}{\sigma _{1}^{2}}-1\bigg )=\frac{r\left( r-\frac{\sigma _{1}^{2}}{2}\right) }{a^{2}}. \end{aligned}$$

Hence, we have

$$\begin{aligned} \displaystyle \int _{0}^{\infty }\bigg (x-\frac{r}{a}\bigg )^{2}\pi (x)\mathrm{d}x= & {} \int _{0}^{\infty }\bigg (x^{2}-\frac{2r}{a}x+\frac{r^{2}}{a^{2}}\bigg )\pi (x)\mathrm{d}x=J_{2}-\frac{2r}{a}J_{1}+\frac{r^{2}}{a^{2}}\\= & {} \frac{r\left( r-\frac{\sigma _{1}^{2}}{2}\right) }{a^{2}}-\frac{2r}{a}\cdot \frac{r-\frac{\sigma _{1}^{2}}{2}}{a}+\frac{r^{2}}{a^{2}}=\frac{r\sigma _{1}^{2}}{2a^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, D., Hayat, T. et al. Dynamics of a Stochastic Predator–Prey Model with Stage Structure for Predator and Holling Type II Functional Response. J Nonlinear Sci 28, 1151–1187 (2018). https://doi.org/10.1007/s00332-018-9444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9444-3

Keywords

Mathematics Subject Classification

Navigation