Abstract
In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.
This is a preview of subscription content, access via your institution.






Notes
A general time-homogeneous Itô stochastic differential equation is given by \(\mathrm {d}\mathbf {X}_{t}=-\alpha (\mathbf {X}_{t})\,\mathbf {X}_{t}\,\mathrm {d}t+\sigma (\mathbf {X}_{t})\,\mathrm {d}\mathbf {W}_{t}\), where \(\alpha :\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}\) and \(\sigma :\mathbb {R}^{d}\rightarrow \mathbb {R}^{d\times d}\) are coefficient functions, and \(\{\mathbf {W}_{t}\}_{t\ge 0}\) is a d-dimensional standard Wiener process.
We call a stochastic process \(\{\mathbf {X}_{t}\}_{t\ge 0}\) time-homogeneous, or autonomous, if it holds for every \(t\ge s\ge 0\) that the distribution of \(\mathbf {{X}}_{t}\) conditional to \(\mathbf {X}_{s}=x\) only depends on x and \((t-s)\). It is the stochastic analogue of the flow of an autonomous (time-independent) ordinary differential equation.
For a measure-theoretic discussion of this construction, please refer to Klus et al. (2016). For our purposes, it is sufficient to equip \(\mathbb {X}\) with the standard Lebesgue measure. In particular, if not stated otherwise, measurability of a set \(\mathbb {A\subset X}\) is meant with respect to the Borel \(\sigma \)-algebra.
These conditions are called interchangeably absolute continuity,\(\mu \)-compatibility, or null preservingness.
Algorithm for Multiple Unknown Signals Extraction.
The easiest way to accomplish this is by adding the observables \(x_{i}\), \(i=1,\dots ,d\), to the set of basis functions.
A process \(\{\mathbf {X}_{t}\}_{t\ge 0}\) is called Feller-continuous if the mapping \(x\mapsto \mathbb {E}[g(\mathbf {X}_{t})\vert \mathbf {X}_{0}=x]\) is continuous for any fixed continuous function g. This implies, that the Koopman operator of a Feller-continuous process has a well-defined restriction from \(L^{\infty }(\mathbb {X})\) to the set of continuous functions. Any stochastic process generated by an Itô stochastic differential equation with Lipschitz-continuous coefficients is Feller-continuous (Øksendal 2003, Lemma 8.1.4).
References
Bandle, C.: Isoperimetric inequalities and applications. Pitman, Monographs and studies in mathematics (1980)
Baxter, J.R., Rosenthal, J.S.: Rates of convergence for everywhere-positive Markov chains. Stat. Probab. Lett. 22(4), 333–338 (1995)
Brunton, S.L., Proctor, J.L., Tu, J.H., Kutz, J.N.: Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2(2), 165–191 (2015)
Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016)
Budišić, M., Mohr, R., Mezić, I.: Applied koopmanism. Appl. Chaos An Interdiscip. J. Nonlinear Sci. 22(4), 047510 (2012)
Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22(6), 887–915 (2012)
Coifman, R.R., Kevrekidis, I.G., Lafon, S., Maggioni, M., Nadler, B.: Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7(2), 842–864 (2008)
Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)
Deuflhard, P., Weber, M.: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005)
Djurdjevac, N., Sarich, M., Schütte, C.: Estimating the eigenvalue error of Markov state models. Multiscale Model. Simul. 10(1), 61–81 (2012)
Ferguson, A.L., Panagiotopoulos, A.Z., Kevrekidis, I.G., Debenedetti, P.G.: Nonlinear dimensionality reduction in molecular simulation: the diffusion map approach. Chem. Phys. Lett. 509(1), 1–11 (2011)
Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D 238, 1507–1523 (2009)
Froyland, G., Padberg-Gehle, K.: Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In: Bahsoun, W., Bose, C.H., Froyland, G. (eds.) Ergodic Theory. Open Dynamics, and Coherent Structures, pp. 171–216. Springer, New York (2014)
Froyland, G., Junge, O., Koltai, P.: Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach. SIAM J. Numer. Anal. 51(1), 223–247 (2013)
Froyland, G., Gottwald, G., Hammerlindl, A.: A computational method to extract macroscopic variables and their dynamics in multiscale systems. SIAM J. Appl. Dyn. Syst. 13(4), 1816–1846 (2014)
Giannakis, D.: Data-driven spectral decomposition and forecasting of ergodic dynamical systems. rXiv e-prints (2015)
Hopf, E.: The general temporally discrete Markoff process. J. Ration. Mech. Anal. 3(1), 13–45 (1954)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Hoboken (2001)
Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024103 (2014)
Junge, O., Koltai, P.: Discretization of the Frobenius–Perron operator using a sparse Haar tensor basis: the Sparse Ulam method. SIAM J. Numer. Anal. 47, 3464–3485 (2009)
Klus, S., Gelß, P., Peitz, S. and Schütte, Ch.: Tensor-based dynamic mode decomposition. ArXiv e-prints (2016)
Klus, S. and Schütte, CH.: Towards tensor-based methods for the numerical approximation of the Perron–Frobenius and Koopman operator. J. Comput. Dyn. 3(2) (2016)
Klus, S., Koltai, P., Schütte, Ch.: On the numerical approximation of the Perron–Frobenius and Koopman operator. J. Comput. Dyn. 3(1), 51–79 (2016)
Koopman, B.: Hamiltonian systems and transformation in Hilbert space. Proc. Ntl. Acad. Sci. USA 17(5), 315 (1931)
Korda, M. and Mezić, I.: On convergence of Extended Dynamic Mode Decomposition to the Koopman operator. arXiv preprint rXiv:1703.04680 (2017)
Krengel, U.: Ergodic Theorems, Volume 6 of de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter & Co., Berlin (1985)
Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition: data-driven modeling of complex systems. SIAM (2016)
Lasota, A.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics volume 97 of Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1994)
Leimkuhler, B., Chipot, Ch., Elber, R., Laaksonen, A., Mark, A., Schlick, T., Schütte, Ch., Skeel, R.: New Algorithms for Macromolecular Simulation (Lecture Notes in Computational Science and Engineering). Springer, New York (2006)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 689–696. ACM (2009)
McGibbon, R.T., Pande, V.S.: Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142(12), 03B621 (2015)
Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1), 309–325 (2005)
Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45(1), 357–378 (2013)
Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72, 3634–3637 (1994)
Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmonic Anal. 21(1), 113–127 (2006)
Noé, F., Clementi, C.: Kinetic distance and kinetic maps from molecular dynamics simulation. J. Chem. Theory Comput. 11(10), 5002–5011 (2015)
Noé, F., Nüske, F.: A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 11(2), 635–655 (2013)
Noé, F., Wu, H., Prinz, J.-H., Plattner, N.: Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. J. Chem. Phys. 139, 184114 (2013)
Nüske, F., Keller, B.G., Pérez-Hernández, G., Mey, A.S.J.S., Noé, F.: Variational approach to molecular kinetics. J. Chem. Theory Comput. 10(4), 1739–1752 (2014)
Nüske, F., Keller, B.G., Pérez-Hernández, G., Mey, A.S.J.S., Noé, F.: Variational approach to molecular kinetics. J. Chem. Theory Comput. 10, 1739–1752 (2014)
Nüske, F., Schneider, R., Vitalini, F., Noé, F.: Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys. 144(5), 054105 (2016)
Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)
Pavliotis, G.A.: Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations volume 60 of Texts in Applied Mathematics. Springer, Berlin (2014)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)
Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., Noé, F.: Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139(1), 07B604 (2013)
Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J.D., Schütte, C., Noé, F.: Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011)
Röblitz, S., Weber, M.: Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv. Data Anal. Classif. 7(2), 147–179 (2013)
Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)
Sarich, M., Noé, F., Schütte, C.: On the approximation quality of Markov state models. Multiscale Model. Simul. 8, 1154–1177 (2010)
Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)
Schütte, Ch. and Sarich, M.: Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Number 24 in Courant Lecture Notes. American Mathematical Society, (2013)
Schütte, Ch., Fischer, A., Huisinga, W., Deuflhard, P.: A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151(1), 146–168 (1999)
Schwantes, C.R., Pande, V.S.: Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory. Comput. 9, 2000–2009 (2013)
Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D Nonlinear Phenom. 212(3), 271–304 (2005)
Tong, L., Soon, V.C., Huang, Y.F., Liu, R.: AMUSE: a new blind identification algorithm. In: IEEE International Symposium on Circuits and Systems, pp. 1784–1787 (1990)
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L. ,Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), (2014)
Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publisher, Hoboken (1960)
Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015)
Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2(2), 247–265 (2015)
Wu, H., Nüske, F., Paul, F., Klus, S., Koltai, P., Noé, F.: Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations. J. Chem. Phys. 146(15), 154104 (2017)
Ziehe, A. and Müller, K.-R.: TDSEP—an efficient algorithm for blind separation using time structure. In: CANN 98, pp. 675–680. Springer Science and Business Media (1998)
Acknowledgements
This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 “Scaling Cascades in Complex Systems,” Project A04 “Efficient calculation of slow and stationary scales in molecular dynamics” and Project B03 “Multilevel coarse graining of multi-scale problems”, and by the Einstein Foundation Berlin (Einstein Center ECMath). Furthermore, we would like to thank the reviewers for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Clarence W. Rowley.
Rights and permissions
About this article
Cite this article
Klus, S., Nüske, F., Koltai, P. et al. Data-Driven Model Reduction and Transfer Operator Approximation. J Nonlinear Sci 28, 985–1010 (2018). https://doi.org/10.1007/s00332-017-9437-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9437-7
Keywords
- Koopman operator
- Perron-Frobenius operator
- Model reduction
- Data-driven methods
Mathematics Subject Classification
- 37M10
- 37M25
- 37L65
- 34L16