Skip to main content
Log in

Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We prove that any weak space-time \(L^2\) vanishing viscosity limit of a sequence of strong solutions of Navier–Stokes equations in a bounded domain of \({\mathbb R}^2\) satisfies the Euler equation if the solutions’ local enstrophies are uniformly bounded. We also prove that \(t-a.e.\) weak \(L^2\) inviscid limits of solutions of 3D Navier–Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardos, C., Székelyhidi, L., Wiedemann, E.: Non-uniqueness for the Euler equations: the effect of boundaries. Russ. Math. Surv. 69, 3–22 (2014)

    Article  MATH  Google Scholar 

  • Bardos, C., Titi, E.S.: Euler equations for an ideal incompressible fluid. Uspekhi Mat. Nauk 62(3):5–46 (2007). (Russian) Translation. Russ. Math. Surv. 62(3), 409–451 (2007)

  • Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14(3), 42–76 (2013)

    Article  MathSciNet  Google Scholar 

  • Bardos, C., Titi, E.S., Wiedemann, E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. Comptes Rend. Math. Acad. Sci. Paris 350, 757–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., W, E., Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., Elgindi, T., Ignatova, M., Vicol, V.: Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal. (2017, to appear)

  • Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143(7), 3075–3090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Gie, G.-M., Kelliher, J.P., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Mazzucato, A.L.: The vanishing viscosity limit for some symmetric flows. (2015, Preprint)

  • Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, California, 1983), vol. 2, pp. 85–98. Math. Sci. Res. Inst. Publ. Springer, New York (1984)

  • Kelliher, J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56(4), 1711–1721 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci. 6(4), 869–880 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelliher, J.P.: On the vanishing viscosity limit in a disk. Math. Ann. 343(3), 701–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, J.L.: Quelque Methodes de Résolution des Problemes aux Limites Non linéaires. Dunod-Gauth, Paris (1969)

    MATH  Google Scholar 

  • Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J.: Vanishing viscosity limit for incompressible flow inside a rotating circle. Phys. D 237(10–12), 1324–1333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J., Taylor, M.: Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.) 39(4), 471–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Mazzucato, A., Taylor, M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Prandtl, L.: Uber Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des dritten internationalen Mathematiker-Kongresses (Heidelberg 1904):484–491, (1905)

  • Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3–4):807–828 (1998), 1997. Dedicated to Ennio De Giorgi

  • Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J., 50(Special Issue):223–241. Dedicated to Professors Ciprian Foias and Roger Temam(2001)

Download references

Acknowledgements

The research of PC is partially funded by NSF Grant DMS-1209394, and the research if VV is partially funded by NSF Grant DMS-1652134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin.

Additional information

Communicated by Edriss S. Titi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, P., Vicol, V. Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit. J Nonlinear Sci 28, 711–724 (2018). https://doi.org/10.1007/s00332-017-9424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9424-z

Keywords

Mathematics Subject Classification

Navigation