Advertisement

Journal of Nonlinear Science

, Volume 28, Issue 1, pp 69–90 | Cite as

Crystallization in Two Dimensions and a Discrete Gauss–Bonnet Theorem

  • L. De Luca
  • G. Friesecke
Article

Abstract

We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann–Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281–287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential \(V(r)=+\infty \) if \(r<1\), \(-1\) if \(r=1\), 0 if \(r>1\). This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss–Bonnet theorem (Knill in Elem Math 67:1–7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann–Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard–Jones potential \(V(r)=r^{-6}-2r^{-12}\), where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

Keywords

Crystallization Interaction potential Discrete differential geometry Energy minimization Gauss–Bonnet theorem 

Mathematics Subject Classification

Primary 82D25 Secondary 05C10 74E15 

Notes

Acknowledgements

This work was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. GF thanks Sasha Bobenko and John Sullivan for their most helpful advice at an early stage of this project that discrete Gauss–Bonnet theorems might be relevant to the goal of relating defect-induced curvature to atomistic energies. Also, LDL and GF thank Oliver Knill for sharing valuable intuition and insights related to Refs. Knill (2012) and Knill (2011).

References

  1. Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44(1–2), 81–100 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)MATHGoogle Scholar
  3. Blanc, X.: Lower bound for the interatomic distance in Lennard-Jones clusters. Comput. Optim. Appl. 29(1), 5–12 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. Cameron, M., Vanden-Eijnden, E.: Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement. J. Stat. Phys. 156(3), 427–454 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627–660 (2017)MathSciNetCrossRefGoogle Scholar
  7. De Luca, L., Friesecke, G.: Classification of particle numbers with unique Heitmann–Radin minimizer. J. Stat. Phys. 167(6), 1586–1592 (2017)Google Scholar
  8. De Luca, L., Friesecke, G.: In preparationGoogle Scholar
  9. Dobrushin, R.L., Kotecky, R., Shlosman, S.B.: The Wulff Construction: A Global Shape from Local Interactions. Providence, AMS (1992)MATHGoogle Scholar
  10. E, W., Li, D.: On the crystallization of 2D hexagonal lattices. Comm. Math. Phys. 286(3), 1099–1140 (2009)Google Scholar
  11. Federer, H.: Geometric Measure Theory. Springer, Berlin (2014)MATHGoogle Scholar
  12. Flatley, L.C., Tarasov, A., Taylor, M., Theil, F.: Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220–225 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models, Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015). doi: 10.1007/978-3-540-70529-1_239 Google Scholar
  15. Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5), 1231–1266 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. Gromov, M.: Hyperbolic groups. In: Gersten, SM. (ed) Essays in group theory pp. 75–263. M.S.R.I. Publ. 8, Springer, (1987)Google Scholar
  17. Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14–15 (1974)Google Scholar
  18. Heitmann, R.C., Radin, C.: The ground states for sticky discs. J. Stat. Phys. 22(3), 281–287 (1980)CrossRefGoogle Scholar
  19. Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory 38(4), 220–229 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. Knill, O.: A discrete Gauss–Bonnet type theorem. Elem. Math. 67, 1–17 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. Knill, O.: A graph theoretical Gauss–Bonnet–Chern theorem, arXiv:1111.5395, (2011)
  22. Knill, O.: Slides of talk at Joint Mathematics Meetings (JMM), Baltimore, (2014). http://www.math.harvard.edu/~knill/seminars/baltimore/baltimore.pdf
  23. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Comm. Math. Phys. 328(2), 545–571 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. Radin, C.: The ground states for soft discs. J. Stat. Phys. 26(2), 365–373 (1981)MathSciNetCrossRefGoogle Scholar
  25. Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. Theil, F.: A proof of crystallization in two dimensions. Comm. Math. Phys. 262(1), 209–236 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow ad solid surfaces. Nature 389, 360–362 (1997)CrossRefGoogle Scholar
  28. Wales, D.J.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 5111–5116 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Zentrum Mathematik, Technische Universität MünchenGarchingGermany

Personalised recommendations