Advertisement

A Shell Model for Optimal Mixing

Article

Abstract

What is the maximum mixing efficiency of an incompressible flow? To address this question we introduce a shell model—a reduced model mimicking the kinematics of advection and diffusion—to study the evolution of an initially inhomogeneous tracer concentration carried by a given incompressible fluid on a periodic spatial domain. We pose the mixing task as an optimization problem: Find the divergence-free velocity field (the control variable) that produces a well-mixed tracer concentration field (the state variable). We consider two alternative objectives: local-in-time optimization (maximize the instantaneous mixing rate) and global-in-time optimization (maximize mixing at a prescribed final time). Throughout, we use a shell-model analog of the \(H^{-1}\) mix-norm to measure mixing. In addition, lower bounds on the mix-norm are obtained and rule out perfect mixing in finite time in particular cases.

Keywords

Mixing Advection–diffusion equation Passive scalar advection Dynamical systems Optimal control theory Fluid dynamics 

Notes

Acknowledgements

This work was supported in part by NSF Awards PHY-1205219 and DMS-1515161. One of us (CRD) is additionally grateful for fellowship funding from the John Simon Guggenheim Memorial Foundation. We thank the reviewers for helpful feedback and thoughtful suggestions.

References

  1. Alberti, G., Crippa, G., Mazzucato, A.L.: Exponential self-similar mixing and loss of regularity for continuity equations. Comptes Rendus Mathematique 352(11), 901–906 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. Altmann, S.L.: Rotations, Quaternions, and Double Groups. Dover Publications, Inc., Mineola, NY (2005)Google Scholar
  3. Annaswamy, A.M., Ghoniem, A.F.: Active control in combustion systems. IEEE Control Syst. 15(6), 49–63 (1995)CrossRefGoogle Scholar
  4. Aref, H.: Stirring by chaotic advection. J. Fluid Mech. 143(1), 1–21 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. Balasuriya, S.: Optimal perturbation for enhanced chaotic transport. Phys. D Nonlinear Phenom. 202(3–4), 155–176 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid part 1: General discussion and the case of small conductivity. J. Fluid Mech. 5(01), 113–133 (1959)MathSciNetCrossRefMATHGoogle Scholar
  7. Bressan, A.: A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova 110, 97–102 (2003)MathSciNetMATHGoogle Scholar
  8. Corrsin, S.: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22(4), 469–473 (1951)MathSciNetCrossRefMATHGoogle Scholar
  9. Cortelezzi, L., Adrover, A., Giona, M.: Feasibility, efficiency and transportability of short-horizon optimal mixing protocols. J. Fluid Mech. 597, 199–231 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. Journal fur die Reine und Angewandte Mathematik 616, 15–46 (2008)MathSciNetMATHGoogle Scholar
  11. Cullen, P.J.: Food Mixing: Principles and Applications. Wiley, New York (2009)CrossRefGoogle Scholar
  12. D’Alessandro, D., Dahleh, M., Mezic, I.: Control of mixing in fluid flow: a maximum entropy approach. IEEE Trans. Autom. Control 44(10), 1852–1863 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. Dimotakis, P.E.: Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. Ditlevsen, P.D.: Turbulence and Shell Models. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  15. Farazmand, M.: Optimal initial condition of passive tracers for their maximal mixing in finite time. Phys. Rev. Fluids 2(5), 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  16. Feynman, R., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics: The New Millennium Edition, volume III: Quantum Mechanics (2010)Google Scholar
  17. Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Optimal mixing in two-dimensional plane Poiseuille flow at finite Peclet number. J. Fluid Mech. 748, 241–277 (2014)MathSciNetCrossRefGoogle Scholar
  18. Gledzer, E.B.: System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Doklady 18, 216 (1973)MATHGoogle Scholar
  19. Halmos, P.R.: Lectures on Ergodic Theory. American Mathematical Soc. (1956)Google Scholar
  20. Hessel, V., Löwe, H., Schönfeld, F.: Micromixers—a review on passive and active mixing principles. Chem. Eng. Sci. 60, 2479–2501 (2005)CrossRefGoogle Scholar
  21. Hobbs, D.M., Muzzio, F.J.: Optimization of a static mixer using dynamical systems techniques. Chem. Eng. Sci. 53(18), 3199–3213 (1998)CrossRefGoogle Scholar
  22. Holzer, M., Siggia, E.D.: Turbulent mixing of a passive scalar. Phys. Fluids 6(5), 1820–1837 (1994)MathSciNetCrossRefMATHGoogle Scholar
  23. Iyer, G., Kiselev, A., Xu, X.: Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity 27, 973–985 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. Jensen, M.H., Paladin, G., Vulpiani, A.: Shell model for turbulent advection of passive-scalar fields. Phys. Rev. A 45(10), 7214–7221 (1992)CrossRefGoogle Scholar
  25. Lin, Z., Thiffeault, J.-L., Doering, C.R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465–476 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. Linden, P.F.: The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201–238 (1999)CrossRefGoogle Scholar
  27. Liu, W.: Mixing enhancement via flow optimization. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5323–5328 (2006)Google Scholar
  28. Lunasin, E., Lin, Z., Novikov, A., Mazzucato, A., Doering, C.R.: Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53, 115611-1–115611-15 (2012)Google Scholar
  29. Mathew, G., Mezić, I., Grivopoulos, S., Vaidya, U., Petzold, L.: Optimal control of mixing in Stokes fluid flows. J. Fluid Mech. 580, 261 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. Mathew, G., Mezić, I., Petzold, L.: A multiscale measure for mixing. Phys. D Nonlinear Phenom. 211(1), 23–46 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. Nguyen, N.-T., Wu, Z.: Micromixers—a review. J. Micromech. Microeng. 15(2), R1–R16 (2005)CrossRefGoogle Scholar
  32. Obukhov, A.M.: Structure of the temperature field in turbulent flow. Izvestiia Akademii Nauk SSSR, Geogr. i Geofiz 13, 58–69 (1949)MathSciNetGoogle Scholar
  33. Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport, vol. 3. Cambridge University Press, Cambridge (1989)MATHGoogle Scholar
  34. Paul, E.L., Midler, M., Sun, Y.: Mixing in the fine chemicals and pharmaceutical industries. In: Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M. (eds.) Handbook of Industrial Mixing: Science and Practice, pp. 1027–1069. John Wiley & Sons, Inc., Hoboken, NJ (2003)Google Scholar
  35. Poon, C.-C.: Unique continuation for parabolic equations. Comm. Partial Differ. Equ. 21(3–4), 521–539 (1996)MathSciNetCrossRefMATHGoogle Scholar
  36. Rabi, I.I., Ramsey, N.F., Schwinger, J.: Use of rotating coordinates in magnetic resonance problems. Rev. Mod. Phys. 26(2), 167–171 (1954)CrossRefMATHGoogle Scholar
  37. Sakurai, J.J.: Mod. Quant. Mech., revised edn. Addison-Wesley Publishing Company, Reading (1994)Google Scholar
  38. Seis, C.: Maximal mixing by incompressible fluid flows. Nonlinearity 26(12), 3279–3289 (2013)MathSciNetCrossRefMATHGoogle Scholar
  39. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Springer Science & Business Media, Berlin (1994)CrossRefMATHGoogle Scholar
  40. Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405, 639–646 (2000)CrossRefGoogle Scholar
  41. Tadmor, Z., Gogos, C.G.: Principles of Polymer Processing. Wiley, New York (2013)Google Scholar
  42. Thiffeault, J.-L.: Using multiscale norms to quantify mixing and transport. Nonlinearity 25(2), R1–R44 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. Vikhansky, A.: Enhancement of laminar mixing by optimal control methods. Chem. Eng. Sci. 57(14), 2719–2725 (2002)CrossRefGoogle Scholar
  44. Villani, C.: Topics in Optimal Transportation. Number 58. American Mathematical Soc. (2003)Google Scholar
  45. Wirth, A., Biferale, L.: Anomalous scaling in random shell models for passive scalars. Phys. Rev. E 54(5), 4982–4989 (1996)CrossRefGoogle Scholar
  46. Wunsch, C., Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004)MathSciNetCrossRefMATHGoogle Scholar
  47. Yamada, M., Ohkitani, K.: Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett. 60(11), 983–986 (1988)MathSciNetCrossRefGoogle Scholar
  48. Yao, Y., Zlatoš, A.: Mixing and Un-mixing by Incompressible Flows. J. Eur. Math. Soc. (JEMS) (to appear). arXiv:1407.4163. (2014)
  49. Zughbi, H.D., Khokhar, Z.H., Sharma, R.N.: Mixing in pipelines with side and opposed tees. Ind. Eng. Chem. Res. 42, 5333–5344 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Christopher J. Miles
    • 1
    • 2
    • 3
  • Charles R. Doering
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA
  3. 3.Center for the Study of Complex SystemsUniversity of MichiganAnn ArborUSA

Personalised recommendations