Skip to main content
Log in

Spatial Dynamics of Multilayer Cellular Neural Networks

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J.A. (ed.) Partial Differential Equations and Related Topics, in Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, New York (1975)

    Chapter  Google Scholar 

  • Ban, J.-C., Chang, C.-H.: On the monotonicity of entropy for multilayer cellular neural networks. Int. J. Bifurc. Chaos 19, 3657–3670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ban, J.-C., Chang, C.-H.: The layer effect on multi-layer cellular neural networks. Appl. Math. Lett. 26, 706–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ban, J.-C., Chang, C.-H., Lin, S.-S., Lin, Y.-H.: Spatial complexity in multi-layer cellular neural networks. J. Differ. Equ. 246, 552–580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ban, J.-C., Chang, C.-H., Lin, S.-S.: On the structure of multi-layer cellular neural network. J. Differ. Equ. 252, 4563–4597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Guo, J.-S.: Existence and uniqueness of entire solutions for a reaction–diffusion equation. J. Differ. Equ. 212, 62–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988a)

    Article  MathSciNet  MATH  Google Scholar 

  • Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988b)

    Article  MathSciNet  Google Scholar 

  • Ei, S.I.: The motion of weakly interacting pulses in reaction–diffusion systems. J. Dyn. Differ. Equ. 14, 85–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Ei, S.I., Mimura, M., Nagayama, M.: Pulse–pulse interaction in reaction–diffusion systems. Phys. D 165, 176–198 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

  • Goldberg, R.R.: Fourier Transform. Cambridge University Press, New York (1965)

    Google Scholar 

  • Guo, J.-S., Morita, Y.: Entire solutions of reaction–diffusion equations and an application to discrete diffusive equations. Discrete Contin. Dyn. Syst. 12, 193–212 (2005)

    MathSciNet  MATH  Google Scholar 

  • Hamel, F., Nadirashvili, N.: Entire solutions of the KPP equation. Commun. Pure Appl. Math. 52, 1255–1276 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 157, 91–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, C.-H., Yang, S.-Y.: On camel-like traveling wave solutions in cellular neural networks. J. Differ. Equ. 196, 481–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, C.-H., Yang, S.-Y.: Structure of a class of traveling waves in delayed cellular neural networks. Discrete Contin. Dyn. Syst. 13, 339–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, S.-B., Zhao, X.-Q.: Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal. 40, 776–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, C.-H., Lin, J.-J., Yang, T.-S.: Existence and stability of traveling wave solutions for multilayer cellular neural networks. Z. Angew. Math. Phys. 66, 1355–1373 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kawahara, T., Tanaka, M.: Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation. Phys. Lett. A 97, 311–314 (1983)

    Article  MathSciNet  Google Scholar 

  • Lee, C.-C., de Gyvez, J.P.: Color image processing in a cellular neural network environment. IEEE Trans. Neural Netw. 7(5), 1086–1098 (1996)

    Article  Google Scholar 

  • Li, B., Weinberger, H.F., Lewis, M.A.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.-T., Liu, N.-W., Wang, Z.-C.: Entire solutions in reaction–advection–diffusion equations in cylinders. J. Math. Pures Appl. 90, 492–504 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.-T., Wang, Z.-C., Wu, J.: Entire solutions in monostable reaction–diffusion equations with delayed nonlinearity. J. Differ. Equ. 245, 102–129 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, N.-W., Li, W.-T., Wang, Z.-C.: Entire solutions of reaction–advection–diffusion equations with bistable nonlinearity in cylinders. J. Differ. Equ. 246, 4249–4267 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X., Weng, P.X., Xu, Z.T.: Existence of traveling wave solutions in nonlinear delayed cellular neural networks. Nonlinear Anal. RWA 10, 277–286 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lowen, R.: Kuratowski’s measure of noncompactness revisited. Q. J. Math. Oxf. Ser. (2) 39(154), 235–254 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math. Biosci. 93, 269–295 (1989a)

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R.: Biological growth and spread modeled by systems of recursions. II. Biological theory. Math. Biosci. 93, 297–331 (1989b)

    Article  MathSciNet  MATH  Google Scholar 

  • Morita, Y., Ninomiya, H.: Entire solutions with merging fronts to reaction–diffusion equations. J. Dyn. Differ. Equ. 18, 841–861 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Morita, Y., Tachibana, K.: An entire solution to the Lotka–Volterra competition-diffusion equations. SIAM J. Math. Anal. 40, 2217–2240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Parimala, R., Anuradha, K., Sankaranarayanan, K.: Multi -layer raster simulation for color image processing using CNN’s cloning templates. Int. J. Adv. Res. Comput. Sci. 3(7), 229–232 (2012)

    Google Scholar 

  • Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr., vol. 41. Amer. Math. Soc, Providence (1995)

    Google Scholar 

  • Sun, Y.-J., Li, W.-T., Wang, Z.-C.: Entire solutions in nonlocal dispersal equations with bistable nonlinearity. J. Differ. Equ. 251, 551–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H.R., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Differ. Equ. 195, 430–470 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H.: Spreading speeds and traveling waves for non-cooperative reaction–diffusion systems. J. Nonlinear Sci. 21, 747–783 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M.-X., Lv, G.-Y.: Entire solutions of a diffusive and competitive Lotka–Volterra type system with nonlocal delay. Nonlinearity 23, 1609–1630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.-C., Li, W.-T., Ruan, S.: Entire solutions in bistable reaction–diffusion equations with nonlocal delayed nonlinearity. Trans. Am. Math. Soc. 361, 2047–2084 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.-C., Li, W.-T., Wu, J.: Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal. 40, 2392–2420 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.-C., Li, W.-T., Ruan, S.: Entire solutions in lattice delayed differential equations with nonlocal interaction: bistable case. Math. Model. Nat. Phenom. 8, 78–103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Weng, P.X., Wu, J.: Deformation of traveling waves in delayed cellular neural networks. Int. J. Bifur. Chaos Appl. 13, 797–813 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Weng, P.X., Zhao, X.-Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Differ. Equ. 229, 270–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S.-L., Hsu, C.-H.: Entire solutions of nonlinear cellular neural networks with distributed time delays. Nonlinearity 25, 1–17 (2012)

    Article  MathSciNet  Google Scholar 

  • Wu, S.-L., Wang, H.-Y.: Front-like entire solutions for monostable reaction–diffusion systems. J. Dyn. Differ. Equ. 25, 505–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S.-L., Shi, Z.-X., Yang, F.-Y.: Entire solutions in periodic lattice dynamical systems. J. Differ. Equ. 255, 3505–3535 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Z.X., Yuan, R., Hsu, C.-H., Jiang, Q.: Traveling waves for nonlinear cellular neural networks with distributed delays. J. Differ. Equ. 251, 630–650 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.-Q., Jing, Z.-J.: Global asymptotic behavior of some cooperative systems of functional differential equations. Can. Appl. Math. Q. 4, 421–444 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees for their careful reading and helpful suggestions which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

Communicated by Ram Ramaswamy.

S.-L. Wu: Partially supported by the NSF of China (11671315), the NSF of Shaanxi Province of China (2017JM1003) and the Fundamental Research Funds for the Central Universities (JB160714, JBG160706). C.-H. Hsu: Partially supported by the Ministry of Science and Technology of Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SL., Hsu, CH. Spatial Dynamics of Multilayer Cellular Neural Networks. J Nonlinear Sci 28, 3–41 (2018). https://doi.org/10.1007/s00332-017-9398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9398-x

Keywords

Mathematics Subject Classification

Navigation