# Hydrodynamic Vortex on Surfaces

• Published:

## Abstract

The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green’s function on the surface. The uniqueness of the Green’s function is established under hydrodynamic conditions at the surface’s boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler’s equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move (“Steady Vortex Metric”). Some examples of surfaces with steady vortex metric isometrically embedded in $$\mathbb {R}^3$$ are presented.

This is a preview of subscription content, log in via an institution to check access.

## Subscribe and save

Springer+ Basic
EUR 32.99 /Month
• Get 10 units per month
• 1 Unit = 1 Article or 1 Chapter
• Cancel anytime

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

## Notes

1. In an arbitrary local coordinate system $$(\xi ^1,\xi ^2)$$, the Riemannian Laplacian is given by $$\Delta =\frac{1}{\sqrt{|g|}}\frac{\partial }{\partial \xi ^j}g^{jk}\sqrt{|g|} \frac{\partial }{\partial \xi ^k}$$ where the sum over repeated indices is assumed, the Riemannian metric is given by $$g_{jk}d\xi ^j\otimes d\xi ^k, g^{jk}$$ is the inverse of matrix $$g_{jk}$$, and |g| is the absolute value of the determinant of the matrix $$g_{jk}$$.

2. In the coordinates of footnote 1, $$\mathrm{d}y=*\mathrm{d}x=-\frac{1}{\sqrt{|g|}}g_{ki}\epsilon ^{il}\frac{\partial x}{\partial \xi ^l} d\xi ^k$$, where $$\epsilon ^{il}=-\epsilon ^{li}$$ and $$\epsilon ^{12}=1$$.

3. The constant may be determined by the normalization $$\int _S G(q,p)\mu (q)=0$$.

## References

• Aboudi, N.: Geodesics for the capacity metric in doubly connected domains. Complex Var. 50, 7–22 (2005)

• Aref, H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345–389 (1983)

• Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex Crystals. Adv. Appl. Mech. 39, 1–79 (2003)

• Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

• Aubin, T.: Some Nonlinear Problems in Riemannian Geometry, 3rd edn. Springer, Berlin (1998)

• Beardon, A.F.: A Primer on Riemann Surfaces. London Math. Soc. Lect. Notes Ser. 78, Cambridge University Press (1984)

• Boatto, S., Koiller, J.: Vortices on closed surfaces, arXiv:0802.4313 (2008)

• Boatto, S., Koiller, J.: Vortices on closed surfaces. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics The Legacy of Jerry Marsden, pp. 185–237. Springer, Berlin (2013)

• Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 12, 863–870 (1977)

• Bolotin, S., Negrini, P.: Asymptotic solutions of Lagrangian systems with gyroscopic forces. Nonlinear Diff. Eq. Appl. NoDEA 2, 417–444 (1995)

• Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface. Regul. Chaotic Dyn. 15, 440461 (2010)

• Crowdy, D., Marshall, J.: Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains. Proc. R. Soc. A 461, 24772501 (2005)

• de Rham, G.: Differentiable Manifolds. Springer, Berlin (1984)

• Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A 471, 20140890 (2015)

• Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydromechanics (Technical report, http://www.math.kth.se/~gbjorn/) (1997)

• Friedrichs, K.O.: Special Topics in Fluid Dynamics. Gordon and Breach, New York (1966)

• Grotta Ragazzo, C., Koiller, J., Oliva, W.: On the motion of two-dimensional vortices with mass. J. Nonlinear Sci. 4, 375–418 (1994)

• Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains, (Technical Report, http://www.math.kth.se/~gbjorn/) (1979)

• Hally, D.: Motion of Vortex in Thin Films, PhD Thesis, The University of British Columbia, Canada (1979)

• Hally, D.: Stability of streets of vortices on surfaces of revolution with a reflection symmetry. J. Math. Phys. 21, 211–217 (1980)

• Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

• He, Z.-X., Schramm, O.: Fixed points. Koebe uniformization and circle packings. Ann. Math. 137, 369–406 (1993)

• Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn 56, 4203–4206 (1987)

• Kimura, Y.: Vortex motion on surfaces with constant curvature. Proc. R. Soc. Lond. A 455, 245259 (1999)

• Lamb, H.: Hydrodynamics, 4th edn. Cambridge University Press, Cambridge (1916)

• Llewellyn Smith, S.G.: How do singularities move in potential flow? Physica D 240, 16441651 (2011)

• Li, P.: Curvature and Function Theory on Riemannian Manifolds, Survey in Differential Geometry in Honor of Atiyah, Bott, Hirzebruch and Singer, VII, International Press, Cambridge, 71–111. (2000)

• Lin, C.C.: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function. Proc. Nat. Acad. Sci. USA 27, 570575 (1941). (see also the second part of the paper in the same volume p. 575-577)

• Lin, C.C.: On the Motion of Vortices in Two Dimensions, University of Toronto Studies, Applied Mathematics Series. University of Toronto Press, (1943)

• Littlejohn, R.G.: “Hamiltonian Theory of Guiding Center Motion”, PhD Thesis, Lawrence Berkeley Lab (eletronically available at: http://escholarship.org/uc/item/6b31q0xd) (1980)

• Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

• Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)

• Newton, P.: The N-vortex Problem: Analytical Techniques. Springer, New York (2001)

• Newton, P.: Point vortex dynamics in the post-Aref era, Fluid Dyn. Res. 46 031401 (11pp) (2014)

• Oliva, W.M.: “Geometric Mechanics”, Lect. Notes Math. 1798, Springer, Heidelberg (2002)

• Paternain, G.P.: Geodesic Flows. Birkhas̈er, Boston (1999)

• Richards, I.: On the classification of noncompact surfaces. Trans. AMS 106, 259–269 (1963)

• Sakajo, T., Shimizu, Y.: Point vortex interactions on a toroidal surface. Proc. R. Soc. A 472, 20160271 (2016)

• Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 2, 3rd edn. Publish or Perish, Houston (1999)

• Turner, A.M., Vitelli, V., Nelson, D.R.: Vortices on curved surfaces. Rev. Modern Phys. 82, 1301–1348 (2010)

• Viglioni, H.H.B.: Vortex Dynamics on Surfaces and applications to the problem of two vortices on the torus, Doctorate thesis (in Portuguese), Universidade de São Paulo (2013)

## Acknowledgements

The authors thank to: Jair Koiller who presented and taught them the subject, Hildeberto Cabral who invited CGR to write a review on the subject, and Björn Gustafsson for the discussions.

## Author information

Authors

### Corresponding author

Correspondence to Clodoaldo Grotta Ragazzo.

Communicated by George Haller.

CGR is partially supported by supported by FAPESP (Brazil) 2011/16265-8.

## Rights and permissions

Reprints and permissions

Ragazzo, C.G., de Barros Viglioni, H.H. Hydrodynamic Vortex on Surfaces. J Nonlinear Sci 27, 1609–1640 (2017). https://doi.org/10.1007/s00332-017-9380-7

• Accepted:

• Published:

• Issue Date:

• DOI: https://doi.org/10.1007/s00332-017-9380-7