Skip to main content
Log in

Hydrodynamic Vortex on Surfaces

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green’s function on the surface. The uniqueness of the Green’s function is established under hydrodynamic conditions at the surface’s boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler’s equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move (“Steady Vortex Metric”). Some examples of surfaces with steady vortex metric isometrically embedded in \(\mathbb {R}^3\) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In an arbitrary local coordinate system \((\xi ^1,\xi ^2)\), the Riemannian Laplacian is given by \(\Delta =\frac{1}{\sqrt{|g|}}\frac{\partial }{\partial \xi ^j}g^{jk}\sqrt{|g|} \frac{\partial }{\partial \xi ^k}\) where the sum over repeated indices is assumed, the Riemannian metric is given by \(g_{jk}d\xi ^j\otimes d\xi ^k, g^{jk}\) is the inverse of matrix \(g_{jk}\), and |g| is the absolute value of the determinant of the matrix \(g_{jk}\).

  2. In the coordinates of footnote 1, \(\mathrm{d}y=*\mathrm{d}x=-\frac{1}{\sqrt{|g|}}g_{ki}\epsilon ^{il}\frac{\partial x}{\partial \xi ^l} d\xi ^k\), where \(\epsilon ^{il}=-\epsilon ^{li}\) and \(\epsilon ^{12}=1\).

  3. The constant may be determined by the normalization \(\int _S G(q,p)\mu (q)=0\).

References

  • Aboudi, N.: Geodesics for the capacity metric in doubly connected domains. Complex Var. 50, 7–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Aref, H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345–389 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex Crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Aubin, T.: Some Nonlinear Problems in Riemannian Geometry, 3rd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  • Beardon, A.F.: A Primer on Riemann Surfaces. London Math. Soc. Lect. Notes Ser. 78, Cambridge University Press (1984)

  • Boatto, S., Koiller, J.: Vortices on closed surfaces, arXiv:0802.4313 (2008)

  • Boatto, S., Koiller, J.: Vortices on closed surfaces. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics The Legacy of Jerry Marsden, pp. 185–237. Springer, Berlin (2013)

    Google Scholar 

  • Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 12, 863–870 (1977)

    Article  MATH  Google Scholar 

  • Bolotin, S., Negrini, P.: Asymptotic solutions of Lagrangian systems with gyroscopic forces. Nonlinear Diff. Eq. Appl. NoDEA 2, 417–444 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface. Regul. Chaotic Dyn. 15, 440461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Crowdy, D., Marshall, J.: Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains. Proc. R. Soc. A 461, 24772501 (2005)

    MathSciNet  MATH  Google Scholar 

  • de Rham, G.: Differentiable Manifolds. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  • Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A 471, 20140890 (2015)

    Article  MathSciNet  Google Scholar 

  • Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydromechanics (Technical report, http://www.math.kth.se/~gbjorn/) (1997)

  • Friedrichs, K.O.: Special Topics in Fluid Dynamics. Gordon and Breach, New York (1966)

    MATH  Google Scholar 

  • Grotta Ragazzo, C., Koiller, J., Oliva, W.: On the motion of two-dimensional vortices with mass. J. Nonlinear Sci. 4, 375–418 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains, (Technical Report, http://www.math.kth.se/~gbjorn/) (1979)

  • Hally, D.: Motion of Vortex in Thin Films, PhD Thesis, The University of British Columbia, Canada (1979)

  • Hally, D.: Stability of streets of vortices on surfaces of revolution with a reflection symmetry. J. Math. Phys. 21, 211–217 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  • He, Z.-X., Schramm, O.: Fixed points. Koebe uniformization and circle packings. Ann. Math. 137, 369–406 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn 56, 4203–4206 (1987)

    Article  MathSciNet  Google Scholar 

  • Kimura, Y.: Vortex motion on surfaces with constant curvature. Proc. R. Soc. Lond. A 455, 245259 (1999)

    Article  MathSciNet  Google Scholar 

  • Lamb, H.: Hydrodynamics, 4th edn. Cambridge University Press, Cambridge (1916)

    MATH  Google Scholar 

  • Llewellyn Smith, S.G.: How do singularities move in potential flow? Physica D 240, 16441651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, P.: Curvature and Function Theory on Riemannian Manifolds, Survey in Differential Geometry in Honor of Atiyah, Bott, Hirzebruch and Singer, VII, International Press, Cambridge, 71–111. (2000)

  • Lin, C.C.: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function. Proc. Nat. Acad. Sci. USA 27, 570575 (1941). (see also the second part of the paper in the same volume p. 575-577)

    MathSciNet  Google Scholar 

  • Lin, C.C.: On the Motion of Vortices in Two Dimensions, University of Toronto Studies, Applied Mathematics Series. University of Toronto Press, (1943)

  • Littlejohn, R.G.: “Hamiltonian Theory of Guiding Center Motion”, PhD Thesis, Lawrence Berkeley Lab (eletronically available at: http://escholarship.org/uc/item/6b31q0xd) (1980)

  • Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)

    Book  MATH  Google Scholar 

  • Newton, P.: The N-vortex Problem: Analytical Techniques. Springer, New York (2001)

    Book  MATH  Google Scholar 

  • Newton, P.: Point vortex dynamics in the post-Aref era, Fluid Dyn. Res. 46 031401 (11pp) (2014)

  • Oliva, W.M.: “Geometric Mechanics”, Lect. Notes Math. 1798, Springer, Heidelberg (2002)

  • Paternain, G.P.: Geodesic Flows. Birkhas̈er, Boston (1999)

    Book  MATH  Google Scholar 

  • Richards, I.: On the classification of noncompact surfaces. Trans. AMS 106, 259–269 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Sakajo, T., Shimizu, Y.: Point vortex interactions on a toroidal surface. Proc. R. Soc. A 472, 20160271 (2016)

    Article  MathSciNet  Google Scholar 

  • Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 2, 3rd edn. Publish or Perish, Houston (1999)

    MATH  Google Scholar 

  • Turner, A.M., Vitelli, V., Nelson, D.R.: Vortices on curved surfaces. Rev. Modern Phys. 82, 1301–1348 (2010)

    Article  Google Scholar 

  • Viglioni, H.H.B.: Vortex Dynamics on Surfaces and applications to the problem of two vortices on the torus, Doctorate thesis (in Portuguese), Universidade de São Paulo (2013)

Download references

Acknowledgements

The authors thank to: Jair Koiller who presented and taught them the subject, Hildeberto Cabral who invited CGR to write a review on the subject, and Björn Gustafsson for the discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clodoaldo Grotta Ragazzo.

Additional information

Communicated by George Haller.

CGR is partially supported by supported by FAPESP (Brazil) 2011/16265-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragazzo, C.G., de Barros Viglioni, H.H. Hydrodynamic Vortex on Surfaces. J Nonlinear Sci 27, 1609–1640 (2017). https://doi.org/10.1007/s00332-017-9380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9380-7

Keywords

Mathematics Subject Classification

Navigation