Advertisement

Journal of Nonlinear Science

, Volume 27, Issue 3, pp 721–774 | Cite as

Arnold Diffusion of Charged Particles in ABC Magnetic Fields

Article
  • 296 Downloads

Abstract

We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

Keywords

Motion of charges in magnetic fields Hamiltonian dynamical systems Arnold diffusion Global instability Heteroclinic connections 

Mathematics Subject Classification

34C20 37C29 37D05 37J40 

Notes

Acknowledgements

The authors are very grateful to A. Delshams, M. Guardia, A. Haro, G. Huguet, R. de la Llave and T.M. Seara for useful discussions and suggestions. We especially want to thank T.M. Seara for her patience and kindness answering several questions on the papers (Delshams et al. 2006, 2008, 2016). The authors are supported by the ERC Starting Grant 335079. This work is supported in part by the ICMAT–Severo Ochoa Grant SEV-2015-0554 (MINECO) and the Grants MTM2012-3254 (A.L.) and 2014SGR1145 (A.L.).

References

  1. Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl. 5, 581–585 (1964)Google Scholar
  2. Arnold, V.I.: Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 17–20 (1965)MathSciNetMATHGoogle Scholar
  3. Bernard, P.: The dynamics of pseudographs in convex Hamiltonian systems. J. Am. Math. Soc. 21, 615–669 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. Bernard, P., Kaloshin, V., Zhang, K.: Arnold diffusion in arbitrary degrees of freedom and crumpled 3-dimensional normally hyperbolic invariant cylinders. Acta Math. (2011). arXiv:1112.2773
  5. Bolotin, S., Treschev, D.: Unbounded growth of energy in nonautonomous Hamiltonian systems. Nonlinearity 12, 365–388 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. Capinski, M., Gidea, M., de la Llave, R.: Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical simulation. (2016). arXiv:1510.00591
  7. Chandrasekhar, S., Woltjer, L.: On force-free magnetic fields. Proc. Natl. Acad. Sci. 44, 285–289 (1958)MathSciNetCrossRefMATHGoogle Scholar
  8. Cheng, C.Q.: Arnold diffusion in nearly integrable hamiltonian systems. (2012). arXiv:1207.4016
  9. Chierchia, L., Gallavotti, G.: Drift and diffusion in phase space. Ann. Inst. H. Poincaré Phys. Théor. 60, 1–144 (1994)MathSciNetMATHGoogle Scholar
  10. Childress, S.: New solutions of the kinematic dynamo problem. J. Math. Phys. 11, 3063–3076 (1970)MathSciNetCrossRefGoogle Scholar
  11. Cheng, C.Q., Yan, J.: Existence of diffusion orbits in a priori unstable Hamiltonian systems. J. Differ. Geom. 67, 457–517 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. Capinski, M., Zgliczynski, P.: Transition tori in the planar restricted elliptic three body problem. Nonlinearity 24, 1395–1432 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. Delshams, A., Gidea, M., Roldán, P.: Arnold’s mechanism of diffusion in the spatial circular restricted three-body problem: A seminumerical argument. Physica D 334, 29–48 (2016)MathSciNetCrossRefGoogle Scholar
  14. Delshams, A., Gutiérrez, P.: Splitting potential and Poincaré-Melnikov method for whiskered tori in Hamiltonian systems. J. Nonlinear Sci. 10, 433–476 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. Delshams, A., de la Llave, R., Seara, T.M.: A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \(\mathbb{T}^2\). Commun. Math. Phys. 209, 353–392 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. Delshams, A., de la Llave, R., Seara, T.M.: A geometric mechanism for diffusion in hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Mem. Am. Math. Soc. 179, 844 (2006)MathSciNetMATHGoogle Scholar
  17. Delshams, A., de la Llave, R., Seara, T.M.: Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv. Math. 217, 1096–1153 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. Delshams, A., de la Llave, R., Seara, T.M.: Instability of high dimensional Hamiltonian systems: multiple resonances do not impede diffusion. Adv. Math. 294, 689–755 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. Delshams, A., Huguet, G.: Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity 22, 1997–2077 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. Delshams, A., Huguet, G.: A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differ. Equ. 250, 2601–2623 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. Delshams, A., Kaloshin, V., de la Rosa, A., Seara, T.M.: Global instability in the elliptic restricted three body problem. (2015). arXiv:1501.01214
  22. Féjoz, J., Guardia, M., Kaloshin, V., Roldán, P.: Diffusion along mean motion resonance in the restricted planar three-body problem. J. Eur. Math. Soc. 18, 2315–2403 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21 (1971/1972) 193–226Google Scholar
  24. Flyer, N., Fornberg, B., Thomas, S., Low, B.C.: Magnetic field confinement in the solar corona I: force-free magnetic fields. Astrophys. J. 606, 1210–1222 (2004)CrossRefGoogle Scholar
  25. Gelfreich, V., Turaev, D.: Unbounded energy growth in Hamiltonian systems with a slowly varying parameter. Commun. Math. Phys. 283, 769–794 (2008)MathSciNetCrossRefMATHGoogle Scholar
  26. Gidea, M., de la Llave, R.: Topological methods in the instability problem of Hamiltonian systems. Discrete Continuous Dyn. Syst. A 14, 295–328 (2006)MathSciNetMATHGoogle Scholar
  27. Gidea, M., Robinson, C.: Diffusion along transition chains of invariant tori and Aubry–Mather sets. Ergod. Theory Dyn. Syst. 33, 1401–1449 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. Gidea, M., de la Llave, R., Seara, T.M.: A general mechanism of diffusion in Hamiltonian systems: qualitative results. (2014). arXiv:1405.0866
  29. Gilbert, A.D.: Magnetic field evolution in steady chaotic flows. Philos. Trans. R. Soc. Lond. A 339, 627–656 (1992)CrossRefGoogle Scholar
  30. Guzzo, M., Lega, E., Froeschlé, C.: A numerical study of Arnold diffusion in a priori unstable systems. Commun. Math. Phys. 290, 557–576 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds, Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)CrossRefMATHGoogle Scholar
  32. Hofschuster, W., Kraemer, W.: A fast public domain interval library in ANSI C. In: Proceedings of the 15th IMACS World Congress on Scientific Computation, vol. 2, pp. 395–400 (1997)Google Scholar
  33. Kaloshin, V., Saprykina, M.: An example of a nearly integrable Hamiltonian system with a trajectory dense in a set of maximal Hausdorff dimension. Commun. Math. Phys. 315, 643–697 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. Kaloshin, V., Zhang, K.: Arnold diffusion for smooth convex systems of two and a half degrees of freedom. Nonlinearity 28, 2699–2720 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. Kaloshin, V., Zhang, K.: Partial averaging and dynamics of the dominant hamiltonian, with applications to Arnold diffusion. (2014a). www.terpconnect.umd.edu/~vkaloshi/
  36. Kaloshin, V., Zhang, K.: A strong form of Arnold diffusion for three and a half degrees of freedom. (2014b). www.terpconnect.umd.edu/~vkaloshi/
  37. Luque, A., Peralta-Salas, D.: Motion of charged particles in ABC magnetic fields. SIAM J. Appl. Dyn. Syst. 12, 1889–1947 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. Mather, J.N.: Arnold diffusion I. Announcement of results. J. Math. Sci. 124, 5275–5289 (2004)MathSciNetCrossRefMATHGoogle Scholar
  39. Moeckel, R.: Transition tori in the five-body problem. J. Differ. Equ. 129, 290–314 (1996)MathSciNetCrossRefMATHGoogle Scholar
  40. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)CrossRefGoogle Scholar
  41. Treschev, D.: Multidimensional symplectic separatrix maps. J. Nonlinear Sci. 12, 27–58 (2002)MathSciNetCrossRefMATHGoogle Scholar
  42. Treschev, D.: Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity 17, 1803–1841 (2004)MathSciNetCrossRefMATHGoogle Scholar
  43. Treschev, D.: Arnold diffusion far from strong resonances in multidimensional a priori unstable hamiltonian systems. Nonlinearity 9, 2717–2757 (2012)MathSciNetCrossRefMATHGoogle Scholar
  44. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)MATHGoogle Scholar
  45. Warren, H.P., Bhattacharjee, A., Mauel, M.E.: On Arnold diffusion in a perturbed magnetic dipole field. Geophys. Res. Lett. 19, 941–944 (1992)CrossRefGoogle Scholar
  46. Zaslavskii, G.M., Zakharov, M.Y., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Stochastic web and diffusion of particles in a magnetic field. Sov. Phys. JETP 64, 294–303 (1986)MathSciNetGoogle Scholar
  47. Zhang, K.: Speed of Arnold diffusion for analytic Hamiltonian systems. Invent. Math. 186, 255–290 (2011)MathSciNetCrossRefMATHGoogle Scholar
  48. Zheng, Y.: Arnold diffusion for a priori unstable systems and a five-body problem. Unpublished preprint, Penn State University (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Consejo Superior de Investigaciones CientíficasInstituto de Ciencias MatemáticasMadridSpain

Personalised recommendations